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1. INTRODUCTION 
 

The building sector is subjected to continuous progress and constant advancements are being 

implemented in the buildings to improve the comfort of the occupants. In recent times, awareness 

was raised regarding energy consumption within the buildings. Due to the increasing number of 

buildings and improving energy access in developing countries, European Union (EU) frameworks 

for boosting building’s energy performance recognized building sector as crucial for achieving 

environmental goals [1]. Domestic hot water and space heating are the major energy consumers in 

buildings, followed by appliances, space cooling, and lighting systems [2]. Novel approaches in 

building design and management are reflected through the application of advanced technologies 

within the Smart Building concept [3] and are based on Internet of Things (IoT) principles, using 

sensors and user-friendly applications. Smart management of the systems in buildings implies 

intelligent control of the connected sensor-embedded devices to provide both efficient energy 

consumption and a comfortable environment for the occupants [4]. To achieve the integration of 

smart technologies in the buildings, the IoT framework is fundamental for data collection and 

communication. In their paper [5], the authors provided a review of general IoT applications in 

buildings, both residential and commercial, through specific IoT-based solutions. It can be 

summarized from their work that numerous recent studies deal with implementing IoT technologies 

in buildings through various building systems. However, from all considered studies, the key 

elements extracted are crucial for distinguishing smart buildings from conventional ones. The 

indicators are divided into smart design, smart action, smart control, smart planning, smart 

monitoring, smart mobility, smart energy, smart waste, and smart water. The latter elements require 

diverse data types, and the main challenge is processing the large-scale data gathered from IoT 

devices and sensors. An important step forward in smart building development is the building’s 

“learning” ability through machine learning applications that enable autonomous building 

decisions based on the collected data [6]. The impact of the users (occupants) in the buildings has 

a key role in building energy performance, i.e., review study regarding the occupant impacts [7], 

analysis of occupant’s impact in high performance buildings [8] and the role of the occupants in 

building energy performance [9]. Research study [10] indicated that half of the most significant 

factors of energy performance in buildings are human-influenced: maintenance, occupant 

activities, building operation and occupants behavior as well as the indoor environmental quality. 

Therefore, apart from developing technologies focused on energy management, it is important to 

consider the user impact as well, which can deliver energy savings in buildings [11]. Since the 

lighting, heating, ventilation, and air-conditioning are the greatest energy-consuming systems in 

the buildings [4], the biggest energy-saving potential can be accomplished by upgrading these 

systems with energy-efficient technologies and solutions for advanced energy management [12]. 

Improved and more efficient buildings can upgrade the life quality of occupants, and mitigate 

energy poverty while also providing additional benefits, i.e., better health and indoor comfort, 

opportunities for green jobs, and general economic and social wellbeing [1]. The user comfort in 

buildings can be regulated through four basic comfort parameters, such as: visual comfort, acoustic 

comfort, thermal comfort and air quality [13]. Currently, the thermal comfort (TC) criteria are 

regulated through standards based on the Predicted Mean Vote (PMV) such as ISO 7730 [14], 

ANSI/ASHRAE Standard 55 [15], as well as adaptive models [16]. When compared with the 

subjective thermal sensation votes of the occupants, limitations regarding the proposed models 

have been discovered pointing out that the PMV approach could either overestimate or 

underestimate thermal sensation [17], and consequently a disproportion between the designed and 



actual energy consumption in buildings occurs resulting in the waste of energy due to 

overcooling/overheating [18]. In work [19], the authors have pointed out that a “one size fit all” 

approach in designing the thermal comfort conditions in buildings is insufficient to cover all the 

possible cases. Namely, it does not consider the variations in thermal preferences of building 

occupants or the diversity in their metabolic activity, clothing level, expectations, physiology etc. 

In study [9], the authors discussed the impact of occupants in the buildings through the energy 

saving potential. They have estimated the potential in energy savings due to the user behavior, 

where savings were from 10% to 25% for residential buildings and from 5% to 30% for commercial 

buildings. The occupants are the ones responsible for the controlling of energy-consuming systems 

in buildings, and adjusting them in accordance to their own preferences rather than focusing on the 

energy efficiency. Therefore, it is reasonable to develop such technologies, which can balance the 

minimization of energy consumption with a maximization of user comfort at the same time. A 

better understanding of individual human thermal comfort requirements could fulfill both occupant 

preferences and Nearly zero-emission building (NZEB) requirements, resulting in improved 

occupant satisfaction and decreased energy consumption [20].  

The smart building topic is well addressed within the literature. There is a plenty of research work 

that deal with upgrading the heating and cooling system management in buildings and including 

the thermal comfort of the users. Trying to assure the satisfaction of occupants with thermal 

conditions, studies are describing local heating/cooling systems focusing on adjusting suitable 

thermal conditions in small areas only, or targeting certain regions of the human body with locally 

installed fans, heaters, or other devices [21] such as heated/cooled chairs proposed by [22], cooling 

robot Roving Comforter (RoCo) [23], Thermal clothing [24] etc. On the other hand, data-driven 

approach relies on streaming data collection through a network of connected sensors, gathering 

user and environmental related information with the aim to optimize energy consumption and user 

thermal comfort. The latter approach can improve the overall thermal comfort of occupants as well 

as the energy efficiency of heating and cooling systems [25]. 

Data-driven thermal comfort approach will be discussed into more details in this work through a 

condensed overview of the proposed solutions as an important foundation for further scientific 

work in the smart building area. Therefore, the main novelty of this work is to provide a review of 

the novel approach in buildings and application of smart technologies, with emphasis on the 

personal thermal comfort in order to provide current state-of-the-art and identifying the research 

gap for the future work.  

 

 

 

  



2. DESCRIPTION OF REVIEW METHODOLOGY 
 

Thermal comfort issue is a hot research topic in the recent years (2017. - September 2022.) with a 

growth trend, resulting with overall of 12.685 published papers dealing with “thermal comfort” 

and 7.187 published papers considering “thermal comfort” AND “buildings” as reported in the 

Scopus database in the given timeframe. The distribution of the published papers through the years 

is presented in Figure 2.1. [26]. With the aim to simultaneously optimize energy consumption and 

user thermal comfort in the smart building paradigm, various technical solutions have been 

proposed and will be discussed in this work in detail.  

  

 

Figure 2.1. Published papers from the Scopus database, referring to “thermal comfort” and 

“thermal comfort” + “buildings” 

 

To be distinguished from the existing literature, this paper addresses the following open research 

questions:  

 identification of the parameters which were considered as inputs in personalized thermal 

comfort modelling, 

 review of the technologies and methods used to collect the information on the defined 

parameters,  

 contributions and limitations of the existing technologies, 

 questioning the perspective for further integration of the proposed solutions with the smart 

building management system. 



The main sources of the reviewed articles, i.e., existing research findings in Elsevier’s Scopus [26] 

and Web of science [27]. The primary selection was obtained with respect to the following 

keywords: (“thermal comfort” AND (“sensor-s/ing” OR “wearables” OR “metabolic rate”). 

Studies that have these specific terms in the title, abstract or list of key words were searched for, 

since these were relevant for the herein conducted study. The considered articles are written in 

English with the years of publication being between 2017 and September 2022. After the primary 

selection, considering the research objectives, articles proposing data-driven personalized thermal 

comfort exploration were selected to the secondary examination, where the main goal was to 

systematize the research works offering smart technologies and methods which investigate 

personal thermal comfort for indoor conditions. The papers, which analyzed an insight into the 

individual’s reaction to indoor environmental conditions, were considered to give novelty in this 

research area. The selection criteria are presented in Figure 2.2. Each paper was studied considering 

the predefined questions (research goals). The factors that affected personalized thermal comfort 

accuracy were divided in three levels as they were chronologically determined through 

experiments. The first level refers to the examination and selection of crucial parameters that affect 

the thermal comfort of the individuals, and which are therefore used as input information in the 

model development. The second level includes smart technologies used to retrieve relevant 

information about defined input parameters. Finally, the processing of the collected information 

(statistical analysis, machine learning) can be considered as the third level in the development of 

the personal thermal comfort models. The aim of data-driven approach in the development of 

thermal comfort modelling is the application in smart buildings, through intelligent management 

of heating and cooling systems. Division of influential factors in thermal comfort modelling is 

presented in Figure 2.3. [28]. The paper was structured accordingly. As a result, this paper provides 

further contributions: (I) systematization of inputs that are found to affect personal thermal comfort, 

(II) critical review of the smart technologies and methods used for sensing and detection of the 

defined inputs proposed in the available literature and (III) a brief insight into approaches of 

processing the collected data. The thermal comfort solutions in the domain of personalized comfort 

systems (local warming/cooling) were not included in this paper since it was above the main scope 

of this work. 



 

Figure 2.2. Paper selection criteria [28] 

 

Figure 2.3. Division of influential factors in thermal comfort modelling [28] 



3. OVERVIEW OF INPUTS THAT AFFECT PERSONAL THERMAL 

COMFORT  
 

The selection of influential parameters for thermal comfort evaluation is partially determined by 

specific standards, while some additional parameters were used in experimental approaches that 

could have impact on thermal comfort. Regarding the standards, thermal comfort is affected by 

four environmental variables and two occupant-related, and the PMV model is the prevailing TC 

indicator. When designing the personalized thermal comfort models, researchers are prone to rely 

on the findings from the standards, but some additional parameters may be included in the 

evaluations if they are brought into relationship with TC. The examined studies propose diverse 

solutions to specify the inputs for the models more precisely. They mainly consider pre-defined 

parameters, trying to understand the best approach to determine MET and CLO values and the 

overall thermal comfort of occupants in building facilities. The inputs which were considered for 

the personal thermal comfort models in the examined studies are summarized in the upcoming 

section. In their research [18], the authors expressed MET as the function of room air temperature 

together with air velocity, taking into consideration the physiological adaptation effect. It was 

assumed in their work that the mean radiant temperature is equal to the room air temperature and 

the relative humidity is set to be a fixed value - 50% while the CLO was obtained from tables in 

the standards. They also considered the feedback from the participants through conducted 

subjective surveys. The assumption for the mentioned approach was a sensitivity analysis 

conducted by [29] and supported by [30], who revealed that personal parameter such as MET is 

found to have the highest impact in determining the PMV among all the variables. Similar to the 

previous [25], also presumed the MET to be the most influential parameter affecting personal 

thermal comfort. In order to develop a valid method, the experimental conditions were defined: the 

CO2 concentration was kept below 1000 PPM, air temperature, MRT, air relative humidity, air 

velocity were measured as the conditions in the experiment room. The heart rate data were collected 

together with the invariable information (age, gender and weight) of the subjects and used for the 

calculation of the MET value in accordance with the international standard for metabolism, ISO 

8996. Ultimately, the difference in metabolic rate was analyzed based on gender and body mass 

index (BMI).  

In [31] the authors limited their study to TC in the cooling mode. The influence of all six PMV 

variables was analyzed with respect to the energy consumption of the cooling systems, in order to 

develop a controller based on thermal comfort inputs. The analysis indicated that the indoor air 

temperature is the most influential factor for PMV > 0 and followed by MRT, MET, and indoor air 

velocity. The previous is important to notice when setting the target temperature in summer period. 

In cases when PMV < 0, MET is determined as most influential, followed by temperature of the 

air, CLO and MRT. Previous directs that metabolic rate can be considered as the most influential 

factor for winter conditions when setting required temperature. In work [32], the authors 

demonstrated that the change in MET and CLO values have a great effect on the personal TC. For 

developed IoT-based personal TC, suitable for an accommodating environment, i.e., mean radiant 

temp, room air temp, air velocity, relative humidity, CLO and MET were combined to facilitate 

the individuality of the developed model. However, their experiment was restricted to three 



activities: sitting, standing with little walks, and sleeping, and the metabolic rate values were taken 

from the table for the given activities.  

Study [33] considered the development of a dynamic monitoring system regarding thermal state of 

the occupants under two activity levels, i.e., low (rest) and high (cycling) level and three 

temperature levels (5°C -low, 24°C-normal and 37°C-high). The MET, average skin temperature 

(including locations on the body: scapula, chest, and arm), heart rate, heat flux and aural 

temperature were measured during the experiments. It is indicative from the provided results that 

a “multi-input-single-output (MISC) discrete-time transfer function”, is best to estimate personal 

metabolic rates for the considered activities, as MET was inferred to be not-easily/invasively 

measured. Aural temperature, average skin heat flux and heart rate, were considered as input 

variables for MET prediction. In the same work, personal thermal sensation votes were included 

through questionnaires based on the ASHRAE seven-point questionnaire.  

Study [34] considered ankle and wrist skin temperature, heart rate, and wrist accelerometer, 

together with meteorological data and surveys, when developing a personal thermal comfort model. 

Parameters were selected based on the findings from the previous conducted studies which reported 

that heart rate [35], skin temperature [36] and physical activity [37] have an impact on the thermal 

comfort. However, the indoor room conditions were not considered, which could be valuable 

information as the subjects spent most of their time indoors. The results imply that skin temperature 

on the ankle is more important parameter to thermal preference when compared with the 

temperature on the wrist, or heart rate (intermediate ranges), while the heart rate could be a good 

indicator at a high value for cooler conditions.  

The study in [38] collected information on air temperature, relative humidity, CLO, wrist skin 

temperature, wrist skin relative humidity, heart rate and thermal sensation vote (TSV) in multi-

occupant offices. The parameters were selected based on the conclusions from the literature review 

and measuring device settings. The collected data was used to build a model for prediction of the 

TSV based on the indoor environmental and physiological data. The study relied on the hypothesis 

based on the insight in the collected data relations and literature review. The temperature difference 

of skin on was nearly linearly related to the difference in the air temperature. The skin relative 

humidity variation was assumed to be the same as the air relative humidity variation. Metabolic 

rate was estimated from the heart rate according to the ISO 8996 methodology [39] and guidelines 

in literature [40]. The TSV prediction with the collected data resulted with R2 = 0.89. However, 

the conducted study hasn’t considered the influence on heart rate by other factors (age, physical 

fitness etc.). 

Human subjective evaluation is essential in modeling TC conditions and was discussed in [41], and 

the ASHRAE 55 questionnaire was used to ponder the difference between occupant subjective TC 

and system TC levels. Indoor temperature, air relative humidity, air velocity and participant heart 

rate were included as parameters through the experiment and selected based on the previous 

research findings in [42] study about the applicability of the heart rate as a predictor for thermal 

comfort and [43] experimental study on thermal comfort. Heart rate was also selected as input since 

there are various commercially developed technologies for heart rate data acquisition (i.e. smart 



watches, wristbands, chest straps etc.). The results revealed close correlation of heart rate with 

respect to the environmental parameters in personal thermal comfort.  

The authors in [44] observed influential parameters as for instance: hand skin temperature, pulse 

rate, ambient air velocity and temperature, mean radiant temperature and air humidity. The 

developed method included normalized skin temperature, spectral characteristics, pulse rate, and 

air temperature as inputs. A significant relation of pulse rate was revealed when predicting thermal 

state, subject to the user's BMI and gender. Warmer sensations cause raised pulse rate within 

females and occupants with low BMIs, while a pulse rate of high BMI occupants increases in 

warmer environments. However, these findings are based on an experiment with a young 

population in a controlled environment, only considering cool-discomfort cases. While developing 

„Robust non-intrusive interpretation“ [45], a room temperature, wrist skin temperature and facial 

skin temperature track was ensured. The results indicated importance of the facial skin temperature 

since it can be effective indicator regarding occupant thermal comfort. What is left to investigate 

is how to distinguish and detect different facial regions, and the impact of temperature gradients in 

these regions on the thermal comfort of individuals.  

Heart rate variability was the main user - related input in the study [46] trying to establish whether 

a user is experiencing thermal discomfort. The experiments were conducted on max. of 13 

participants. Simultaneously with the heart rate information, the environmental conditions were 

measured as well, i.e., air temperature (measured with thermocouples at 1.1. m height), air velocity 

(anemometer placed at 1.25 m from the window and 1.10 m from the ground), relative air humidity 

(0.7 m from the floor and 1.25 m from the window) and the globe temperature (1.10 m from the 

ground). The experiments covered cold – induced comfort, warm – induced comfort and transient 

air temperature. The authors highlighted that environmental parameters are important for prediction 

of thermal comfort and physiological information from the smart watch could be used as support 

for personal models development. In [47] skin heat exchange rates were explored on the face and 

wrist by coupling it with variations in skin temperature, air temperature and relative humidity. The 

correlation between heat exchange between human and environment, thermophysiological 

responses, ambient environment and thermal preference of the occupants were investigated. 

According to the main results, it was found that the considering heat ex-change rates have a better 

performance when predicting the thermal comfort of occupants in comparison with the case when 

employing ambient temperature and skin temperature as features. Their experiments were 

performed under controlled conditions, and it is still necessary to investigate these findings in field 

studies, where the parameters are generally less controlled. Similar to the previous study, [48] 

indicate that the wrist skin temperature and its time differential, together with the heart rate, can be 

used for estimating human thermal sensation accurately in different activity states. The experiment 

observed environmental parameters (indoor temperature, the concentration of CO2, air velocity, 

and relative humidity), thermal characteristics, skin temperature, activity state and heart rate.  

The study [49] collected temperature data of the user’s face, body skin, and the thermal sensation 

vote due to exposure to the environmental conditions in the thermal chamber for fixed MET (~1) 

and CLO (~0.15). The facial skin temperature measured on chin, nose, cheeks, and forehead was 

selected to represent the mean skin temperature (MST) since the ANOVA test result demonstrated 

that MST could distinguish thermal sensation with a 95% significance level. However, this 



approach isn’t without the limitations and facial region should be better explored for the thermal 

comfort investigation. It was reported in the paper that the nose and chin skin temperature cannot 

express thermal sensations for “slightly warm” and “warm”. Furthermore, the forehead and cheek 

skin temperature cannot accurately distinguish thermal sensation in the range between “cool“and 

“warm” and therefore cannot be used as representatives for MST. In the study [50] authors 

discussed TC for an indoor environment, considering average radiant temperature, ambient 

temperature, air relative humidity, wind velocity (indoor), CLO and MET. According to the 

conducted analysis, the ambient temperature has the highest influence on PMV (which was chosen 

as the TC standard in their study), while wind velocity and relative humidity have a low impact on 

the PMV. Research [51] analyzed variables which affect the PMV for the TC assessment such as 

energy metabolism, effective mechanical power, thermal insulation of clothing, indoor air 

temperature, average radiant temperature, CLO, indoor air temperature, relative air velocity, partial 

water vapor pressure (air), convective coefficient of heat transfer, and surface temperature of 

clothing in accordance with the non-linear PMV index formulation.  

In the [52] the feasibility of detecting electroencephalogram (EEG) signals with an 

electroencephalogram was examined for determining if a person has reached thermal comfort, 

which may lay a foundation for some future research in this direction. This approach was based on 

the study (Yao et al., 2008) which reported the connection of the EEG signal variation in thermally 

uncomfortable state. Authors considered thermal comfort and hot discomfort cases, and the 

developed model almost had 90% accuracy in the discrimination between these two states, while 

the subjects were performed reading tasks. For perspective in thermal comfort modelling, cool 

discomfort cases should be investigated, as well as different types of activities. Also, the impact of 

other thermal comfort parameters should be considered such as air humidity, air velocity, etc. The 

potential change in user mental state was also not included in their investigation. EEG signal 

acquisition was also applied in [53] together with other physiological signals, i.e., 

photoplethysmogram (PPG), electrodermal activity (EDA), skin temperature and the body 

movement (3-axis acceleration). The experimental campaign took place in a controlled climate 

chamber, with pre-defined ambient temperatures, i.e., cold (16 ± 0.6°C), neutral (24 ± 0.9 °C), and 

hot (31 ± 2.4 °C). 

Authors in [54] explored the effect of evaporation on the user's thermal state and thermal comfort 

when users are exposed to heat stress. The pro-posed approach aimed to predict evaporative heat 

loss was and to investigated if it would be suitable to determine thermal state and comfort. All 

variables according to their model could be calculated by direct measurements of air temperature, 

radiation amounts (solar radiation as well as infrared radiation), and skin temperature, except for 

evaporative heat loss which could be estimated from skin and environment approximations for 

humidity. The main limitation of their proposed work is directed on considering only one 

measuring point, assessing evaporation on human body anatomical regions.  

The model for individual thermal comfort was proposed in [55], considering the human and 

environmental parameters. Air temperature, speed and humidity, position of the user, type of the 

user activity and clothing as well as personal information of the user (age, gender, height, and 

weight) were selected as the inputs for the thermal comfort model in their investigation. The 

activity type was taken from the corresponding activity table, and only four cases were considered 



(lying, sitting relaxed, sitting and working and standing relaxed). In study [56], the authors were 

keeping track of the air temperature and relative humidity, clothing temperature and exposed skin 

temperature. The analysis showed that skin and clothing temperatures, at different body locations, 

are crucial for the thermal comfort level of the occupant. As the clothing insulation was kept 

constant during the experiment, it is reasonable to examine the effect of different clothing 

insulation on the clothing temperature measurements. The results indicated that it is promising to 

include some additional parameters in their model (such as BMI).  

Furthermore, in [57], the authors introduced skin conductance as a feature in the personal comfort 

modelling. The personal thermal comfort was investigated in various combinations along with skin 

temperature, clothing, heart rate, MET, air temperature and humidity. This way, individual 

variables could be separated and individually evaluated. Indoor air temperature and skin 

temperature were found to be the most prominent to capture the occupant thermal comfort followed 

by MET. Using clothing resistance, it is found to result in less accurate predictions of thermal 

comfort. Heart rate is reported as a relatively accurate predictor of thermal comfort. Other data 

were also collected and provided by the wearable devices, such as user acceleration and angular 

velocity, number of steps, ultraviolet radiation exposure intensity and total number of calories 

burned by the wearer. The work did not report the importance of the mentioned data in the personal 

thermal comfort modelling. The authors in study [58] also investigated skin conductance together 

with skin temperature and heart rate as physiological data. Also, motion-based activity was 

captured to calculate the user’s MET, based on usual office activities (e.g., walking, sitting, 

climbing, standing, stairs, descending stairs, etc.). Ambient temperature and relative humidity data 

were collected as environmental inputs. It was noted that skin conductance, heart rate, and 

metabolic rate can be considered as strong predictors for “cool” and “warm” dis-comfort cases 

regarding one user. For a different user, ambient temperature was found to be a good predictor 

regarding discomfort cases. It was also presented through con-ducted experiments that activity-

based metabolic rates can be considered as a strong predictor of personal thermal state for most 

users (9 out of 10). An exceptional case was noted with one subject for whom activity-based 

metabolic rates did not make any significant impact in predicting thermal states. The authors 

concluded that the impact of the considered inputs on thermal comfort can differ between subjects. 

In experiment [59] authors have included the facial movement data (facial expressions) as a feature 

in thermal comfort modelling examining it in relation to the galvanic skin response and heart rate 

changes as well as the subjective response. Air velocity, relative humidity, black globe temperature 

and air temperature were chosen as indicators of the room environmental conditions. However, any 

significant results for thermal comfort detection were not reported and this approach requires 

further investigation for the application in mentioned context. 

The parameters which were considered as inputs for personal thermal comfort models in the 

reviewed literature are grouped as follows and summarized in Table 3.1.:  

- Environmental conditions, 

- Personal information of users,  

- Subjective evaluations from users. 



 

Table 3.1. Inputs considered for personal thermal comfort modelling 

Reference Environmental data Personal data Subjective 

response 

 [18] MRT, Room air temp, relative 

humidity, Air velocity 

MET, CLO Y 

 [25] Air temperature, MRT, air 

velocity, relative humidity 

MET, heart rate NA 

 [31] MRT, Room air temp, relative 

humidity, air velocity 

MET, CLO N 

 [32] MRT, Room air temp, air 

velocity, relative humidity 

MET, CLO N 

 [33] Ambient air temperature Heart rate, aural temperature, 

average skin temperature, skin 

heat flux, core temperature, 

metabolic rate 

Y 

 [34] Meteorological information 

(outdoor conditions), 

temperature near the user (on 

the outside of the pants) 

Skin temperature at wrist and 

ankle, heart rate, and wrist 

accelerometry 

Y 

 [41] Indoor temp, relative humidity, 

air velocity 

Heart rate NA 

 [44] Air temperature and air 

velocity, 

relative humidity, and MRT 

Hand skin temperature and 

pulse rate 

Y  

 [45] Room temp. and humidity Wrist skin temp., facial skin 

temperature 

Y 

 [47] Air temperature and relative 

humidity 

Heat exchange 

rate, wrist skin temp., facial 

skin temperature 

Y 

 [48] Indoor temp., CO2, Air 

velocity, Rel. humidity 

Skin temp., Active state, Heart 

rate,  

Y 

 [50] Ambient temperature, MRT, 

relative humidity, indoor wind 

speed 

 CLO, and MET NA 

 [51] Indoor air temperature, MRT, 

relative air velocity, partial 

pressure (water vapour) 

MET, CLO, Surface 

temperature of clothing, 

coefficient of clothing, 

coefficient of heat exchange by 

convection 

NA 

 [52] Indoor temp MET, CLO, brain activity Y 

 [54] Global solar radiation, ground-

sourced and atmospheric 

infrared radiation, ground-

reflected solar radiation, the air 

humidity and temperature  

metabolic heat generation and 

skin temperature 

Y 



 [55] Air temperature, air humidity, 

wind speed around the person 

MET, CLO, the body 

position and user personal 

information (gender, age, 

height, and weight) 

Y 

 [56] Office temperature, relative 

humidity 

Exposed skin 

temperature and clothing 

temperature 

Y 

 [57] Air temperature, air humidity Skin conductance, skin 

temperature, clothing, heart 

rate, MET  

Y 

 [58] Ambient temperature and 

relative humidity (RH) 

Heart rate, skin temperature, 

electro-dermal activity, 

motion-based activity 

Y 

 [59] Air velocity, relative humidity, 

black globe temperature, air 

temperature  

CLO, fat percentage, height, 

weight, age, gender, period of 

residence in the observed 

geographical area, galvanic 

skin response, heart rate, facial 

muscle movement (facial 

expression) 

Y 

 [38] Air temperature, relative air 

humidity 

CLO, wrist skin temperature, 

wrist skin relative humidity, 

heart rate  

Y 

 [49] Air temperature Age, BMI, face skin 

temperature from 4 points; 

forehead, nose, cheek, and the 

chin 

Y 

[17] Air temperature, relative 

humidity and CO2 level 

MET, gender, age Y 

[53] Air temperature Heart rate, skin conductance, 

EEG, skin temperature 

Y 

[46] Air temperature, air velocity, 

relative air humidity, globe 

temperature 

Heart rate Y 

 

From the results of the conducted review, that are presented in the Table 3.1., it can be concluded 

that room air temperature is the main indicator for the indoor environmental conditions. Relative 

air humidity, air velocity and mean radiant temperature are also frequently used environmental 

parameters in thermal comfort modelling, following the well-known Fanger’s logic developed 

through the standards. Additionally, outdoor meteorological conditions, CO2 level, black globe 

temperature and partial water vapor pressure in the observed environment where included some 

studies. The carbon dioxide level is reported to be crucial factor in thermal comfort modelling in 

the conducted study [17]. The frequency of the environmental inputs inclusion in the considered 

literature is presented in the Figure 3.1. (based on the literature review presented in the Table 3.1). 

 



  

Figure 3.1. Environmental inputs in the thermal comfort modelling 

 

When considering the user – related parameters, MET and CLO are frequently included in the 

evaluation. In order to gain a better insight into the response of users to changes in environmental 

conditions that can be indicators of thermal comfort, additional parameters were considered in the 

reviewed studies. Skin temperature was used the most commonly on different body regions i.e., 

face, wrist, ankle, scapula. Skin temperature has been shown to be applicable as predictor for MET 

[34], thermal sensation [49] and thermal comfort [57], depending on the approach which was used 

in the experiment. Heart rate was also frequently used as parameter in the considered literature. 

Moreover, heart rate was reported to be indicator for thermal comfort in studies [41] and [57], 

thermal sensation in [48] and for thermal preference of the user in cooler conditions [34]. Also, 

heart rate data was used for calculating MET in accordance with ISO 8996 standard methodology 

[39] and guidelines in literature [38]. Skin conductance was introduced as feature in the personal 

comfort modelling [57]. In combination with MET value and heart rate, skin conductance was 

found to be a strong predictor for “cool” and “warm discomfort cases” [58]. The application of the 

user – related inputs in the considered literature is presented in the Figure 3.2. (based on the 

literature review presented in the Table 3.1.). Other user – related parameters such as skin heat 

flux, activity of the user, aural temperature etc., were included in the reviewed literature, but 

additional research is necessary in this regard to draw relevant conclusion, since there is a quite 

low number of conducted studies. 

 



 

Figure 3.2. User - related inputs in the thermal comfort modelling 

 

  



4. SMART TECHNOLOGIES AND METHODS FOR INVESTIGATION 

OF PERSONAL THERMAL COMFORT  
 

When approaching personal thermal comfort modelling, various researchers have offered their 

contributions by proposing innovative smart technologies and methods for detecting thermal 

comfort parameters in the perceptual layer. As the importance of defining relevant inputs for the 

model is well known, another crucial factor, which affects the model’s accuracy, is the technology 

that is being used in the proposed evaluation methodology, as it has a direct impact on the data 

provided to the model.  

While the environmental variables are suitable to be measured by different commercial sensors, 

the personal variables (MET and CLO) usually remain being estimated roughly from the tables 

defined in the standard [31]. The method for reading off the MET and CLO values from the table 

(or the activity journal) belongs to the category of “observation”, and can have an error of up to 

20% [30]. According to the methodologies from the ISO 8996 standard, there are four different 

levels of accuracy when measuring metabolic heat production in the body [60]. Level I and II 

methods (screening and observation) consider the approximate value of the metabolic rate value 

and do not take into consideration the individual characteristics of the users. Estimations, tables as 

well as other input data provided in the standard refer to the “average” individual. The method of 

measuring the metabolic rate on level III calculates MET on the basis of measuring the heart rate 

(real time). The main drawback of the level III method is that it neglects psychological factors, but 

the error rate is less than 10%, while the accuracy is better than that of methods on levels I and II. 

Direct calorimetry measures the heat transfer from the body into the surroundings in a certain 

amount of time. It is usually measured by using complex and demanding technology, and for this 

reason, direct calorimetry is rarely used in thermal comfort investigations. Level IV methods 

account for being the most accurate methods but require more complex technologies and sensors 

of very high resolution and are not suitable for continuous on-site measurements. They are shown 

in Table 4.1. [39]. 

 

Table 4.1. Levels for determining metabolic rate [39] 

Level Method Accuracy 

I Verification  Classification with 

regard to occupation 

Classification with 

regard to activity 

Rough information 

Very high risk of 

error 

II Observation Tables for group 

classification 

Tables given for 

specific activities 

High risk of error 

Accuracy ± 20% 

III Analysis Measuring the heart rate 

in determined 

conditions 

Medium risk of 

error 

Accuracy ± 10% 



IV Expertise Measuring oxygen 

consumption 

Direct calorimetry 

Low risk of error 

Accuracy ± 5% 

 

In the existing literature, different approaches were also considered and mostly rely on the 

principles of method II, III and partially IV regarding ISO standards. The applied technologies vary 

among studies to provide accurate data to the developed data-driven models and will be discussed 

in the upcoming sections. Technological solutions can be categorized according to their data 

acquisition principle. In this regard they are divided on connected sensor systems, camera-based 

technologies, and wearable devices.  

 

4.1.Connected sensors systems  

 

In work [33], the climate chamber experiment was conducted, with a premise that the best way to 

estimate individual MET is by continuously measuring heart rate, aural temperature, and average 

heat flux. Individual thermal sensation then can be predicted by using the classification model and 

estimate the MET as well as the core body temperature. An individualized thermal sensation 

prediction can be used for adjusting the indoor conditions to be compliant with the thermal comfort 

of the users, and thus prevent possible overcooling or overheating. The suggested approach 

provides both real-time data and individual user data. To gather important user-centric data, the 

temperature sensor (Shimmer-Sensing, Dublin, Ireland) was used for skin temperature 

measurements together with two patches for body temperature (greenTEG, Zurich, Switzerland) 

and two heat flux patches. A wireless ear Bluetooth temperature sensor (Cossinus One) was used 

to estimate core temperature. Heart rate was monitored by using a polar H7 ECG (Polar, Kempele, 

Finland) strap, which was placed under the chest of the subject, at a sampling frequency of 128 Hz. 

In order to reckon the correlation of the metabolic rate with the measured variables, the MetaMAX 

3B (CORTEX-Medical, Leipzig, Germany) spiroergometer was used to calculate the metabolic 

rate (indirect calorimetry principle). The environmental conditions were predefined, as the 

experiment was performed in a climate chamber for three different temperatures from 5°C - low, 

24°C - normal and 37°C - high, and two activity levels; low (seated) and high (cycling). For the 

further improvement of the proposed system, the main request would be to examine the 

performances in dynamic environmental conditions and for different activity levels.  

Work [34] proposed fourteen personal thermal comfort models with various machine-learning 

algorithms in order to predict the thermal preference of the subjects. Based on the insight from the 

previous studies, the authors decided to consider wrist and ankle skin temperature, heart rate, and 

wrist accelerometry. The sensors for monitoring the occupants were selected based on their 

convenience to wear during the day. The iButton device (DS1923, Maxim Integrated Products, 

U.S.) was used for wrist and ankle skin temperature measuring every 60 seconds. The polar H7 

chest-strap (Polar Electro, Ltd., Finland) was applied for heart rate measurements in second 

intervals. A small cellphone (POSH Mobile, Ltd., U.S.) was set in a wrist pocket, which detected 

the activity level of the subjects. The developed models have the best prediction outside the thermal 



neutrality zone which can be useful in practice because it is of interest to avoid people feeling over-

cooled or over-heated. The developed models lead 78% accuracy, and it is greater than in the 

conventional models; PMV and adaptive. The proposed approach enables real-time and individual 

subject data, which is an important advantage when compared to conventional models. However, 

their approach is lacking indoor environmental data, which might be a limitation for further 

possible implementation into HVAC systems.  

A structure for the automatic HVAC control in smart buildings was elaborated in [51]. The system 

architecture aimed to optimize the energy efficiency and thermal comfort for the indoor 

environment in smart buildings. The proposed solution relies on non-linear PMV formulation 

updated with the data collected from the sensors. Data on air velocity, air temperature and humidity 

values were collected by sensors. Occupant activity and clothing insulation were left to be 

estimated with the given tables from standard. For the sake of the model, simplified assumptions 

were provided: the MET was considered to be a fixed value at 70 W/m2 (sedentary activities), CLO 

was considered for working clothes at 0.14 (m2K)/W, together with the thermal insulation of a chair 

0.016 (m2K)/W. The air velocity was kept in the interval from 0.15 (m/s) to 0.25 (m/s), and it was 

thus considered as a constant and equal to 0.1 (m/s). An experiment implementing the proposed 

system was deployed in a real environment in the campus building as proof regarding the concept 

and demonstration of control algorithm effectiveness. Particularly, significant energy savings were 

obtained in comparison to standard regulation, based on convectional thermostats. Thermal 

comfort was obtained despite the present disturbances by occupant’s variations and the windows / 

doors opening. A similar approach was found in [50] and the application of the technology is 

described in [61] by the same authors where “Thermal Comfort Environmental Monitoring System 

Based on IoT Architecture” was proposed. The thermal comfort PMV index was determined in 

accordance with the ISO 7730 standard [62]. Environmental variables were updated in the model 

with actual sensing data while clothing insulation is considered as a fixed value (0.6 clo), as well 

as the metabolic rate (1.2 met, 70 W/m2). Sensors for air temperature and humidity and wind 

velocity collected the relevant data, while CO2 and particulate matter were only used for reference. 

If the system operated in energy-saving mode, it could provide additional 11.3% of energy savings. 

As much as these systems seem to be effective on the side of HVAC control, the input data might 

suffer from estimation uncertainties in terms of thermal comfort. It is recommended to try to 

provide real-time occupant information (MET, CLO) to get a better insight into user feedback and 

consider the individual differences among them.  

A machine learning thermal comfort method was presented in [44], which predicts a personalized 

Thermal sensation index by sensing hand skin temperature, pulse rate and ambient air parameters 

with a set of connected sensors. The sensor network consisted of a Velocicalc 9545 sensor (TSI 

Inc., USA) to measure air velocity air temperature and relative humidity, Transducer 845 (TSI Inc., 

USA) to measure air velocity, LM3 (TSI Inc., USA) for Black Globe Temperature measurements. 

The skin temperature measurements were performed with an Exacon D-S18J (Libelium Co., Spain) 

sensor and pulse rate was detected by using a Pulsioximeter (Libelium Co., Spain). The proposed 

method is data-driven and can be considered as adaptive and provide real – time data. Due to the 

popularity and availability of wearable sensing technology, it can be applied individually to the 

users. Also, by including air temperature as a parameter to the model, it opens the opportunity to 



further model development considering the integration of HVAC control via the Internet-of-Things 

to meet energy-efficient and comfortable building requirements. On the other hand, to provide 

more reliable data, future improvements regarding the model should be directed towards more 

dynamic environmental conditions since cool-discomfort was the only one considered until now. 

As a younger population was exclusively examined, it is recommended to investigate a larger group 

of subjects, with different ages in various activity levels. A thermal comfort evaluation model 

developed in [55], proposed an artificial neural network, based on PMV model parameters with 

updated data from environmental sensors. Personal parameter data (MET, CLO) were entered from 

the tables. They also considered age, gender, height, and subject weight, which were reported 

through a questionnaire in two parts. The first part included basic information regarding the 

subjects such as height, age, gender, weight. The second part considered the thermal comfort 

parameters, i.e., type of clothes, type of the activity performed by occupants, and their thermal 

comfort perception on a 7-point scale. The accuracy of the proposed model is reported to be better 

than the PMV. The mean squared error (MSE) of the developed model was about 0.39, while for 

the traditional PMV model MSE was about 2.1. This approach does not consider the individual 

differences among users, which might be a cause for uncertainties in a wider use. The proposed 

system has the possibility for the integration of thermal information in a building model in order to 

realize energy savings by optimizing the HVAC system, with regards to user thermal comfort.  

Furthermore, in study [47], a connection between the heat flux of facial and wrist skin as well as 

personal thermal comfort was examined under transient environmental conditions. The heat flux 

sensor consisted of many thermocouple junction pairs across the heat flux gauge and thermocouple. 

The developed methodology was applied when detecting both the heat exchange rate from the skin, 

and skin temperature. A DHT-22 sensor was connected with an Arduino microprocessor, for the 

air temperature and humidity measurements at 0.5 Hz in a temperature range from 20°C to 30°C. 

The heat exchange rate is found to have high positive correlations with thermal preferences and a 

high negative correlation with air temperature and skin temperature (median -0.87 and -0.95). 

When compared to the skin temperature as well as surrounding temperature as features, the skin 

heat exchange rate had better performance results regarding the thermal comfort preference 

inferring of subjects. In further experiments, the authors suggest the integration of heat flux sensors 

with wearable devices to provide the users a more comfortable experience. A s skin surface and 

sensor contact are needed, which could be considered as a restriction when designing prototype 

devices. The impact of other environmental factors should also be examined, as they can affect 

user experience as well.  

A slightly different adaptive approach was presented in work [63], where the authors bypassed 

personal parameter detection from the subjects, relying on the subjective responses from the users 

in combination with the environmental air temperature and ambient light level monitoring. The app 

was designed to collect factors such as age, gender, and type of the user (student/staff/faculty 

designation) and subject thermal sensation for the possible future manipulation of the HVAC 

system. The interface of the app was designed as a “virtual thermostat” to give the possibility to 

anonymously report the subjective experience of the room temperature conditions by virtually 

lowering or raising the temperature (± 0,5°C). During the examined study, the app was only of 

informative nature, and it did not provide any connection with the HVAC system in order to 



actually change the room temperature, but instead was recorded as feedback for future adjustments. 

The system integrated wireless Bluetooth low energy (BLE) proximity beacons to trigger the app 

on mobile phones when the user passes in the vicinity of the beacon. Temperature sensors were 

embedded in the beacons used in the study to provide the environmental data as well. The proposed 

solution presents a flexible, low-cost participatory sensing approach, which is non-invasive to the 

users. In case of further development, it has the potential to reduce the carbon emissions of the 

HVAC system electricity consumption. However, prior to this, the system should be updated with 

more accurate sensing devices and include user-related parameters (clothing and metabolic rate). 

Another aspect worth investigating would be the dynamical thermal sensation change of the 

occupants, to provide queries at the right moment to register discomfort triggers as much as 

possible, and simultaneously avoid subject fatigue caused by reporting the query [13]. 

 

4.2.Camera-based technologies 

 

A thermal comfort detection approach was proposed in [25] through a non-invasive system using 

a Kinect camera (contactless sensor), which registers the behavior of the user and thus the activity 

of the users can be extracted. During the “learning” process of the model, subject heartbeat data 

(using the Fitbit™ bracelet) was collected together with the environmental parameters in controlled 

conditions using sensors. Artificial intelligence (AI) was able to learn image information and MET 

for certain behaviors. The MET value was calculated in accordance with level III ISO 8996 

standards [39]. Using MET values and kinect camera images, deep learning was achieved to 

estimate the thermal comfort of the users. The model was formed to predict the metabolic rate using 

a kinect camera so that it could be applied without the further use of sensors which is illustrated on 

the Figure 4.1. Their approach resulted with a non-invasive and contactless method, while on the 

other hand, the individuals may feel discomfort due to being recorded. Moreover, the available data 

are limited with the camera angles.  

 

Figure 4.1. Illustrative representation of using Kinect-camera for thermal comfort 

detection [25] 

An IoT based thermal comfort control system was elaborated in [32]. A temperature sensor, air 

velocity sensor and a humidity sensor were used to provide the indoor environment information. A 

video camera was applied to detect the metabolic rate, as well as the clothing insulation by 

observing occupant behavior. Occupant activity was captured by video camera and fed into a pose 



detector – OpenPose to extract the pose-based key points. Human activity was determined based 

on the extracted features. Possible indoor activities were divided on sitting, standing with little 

walks, and sleeping. The collected images were divided accordingly to be assigned with the 

corresponding tabular metabolic rate values. Clothing insulation was obtained by extracting the 

color histogram, Gabor filter and Hu invariant moment (captured individual images used for 

classification). Four typical clothing classes were employed in their system, together with clothing 

insulation values; short-sleeved shirts, long-sleeved shirts, jackets or sweaters, and cotton coats. 

The given system can provide real-time information on indoor thermal comfort conditions. On the 

other hand, it does not consider the personal differences in metabolic rates among the individuals, 

as it assigns the same MET value to all users, relying just on their activity. Furthermore, the system 

is limited by considering only three MET and four CLO values. Additionally, the users may feel 

discomfort due to video camera recording and the available data can be restricted by the camera 

angles as an already noted issue in the previous study.  

Another camera – based approach was described in [45] with a thermal and kinect dual camera 

system aiming to extract skin temperature and predict user thermal preferences at different angles 

and positions. The proposed system implements human detection (RGB camera) and provides 

distance information with depth sensors. Temperature measurements are taken with a thermal 

camera. The system was verified through the monitoring of skin temperature on the face for 16 

subjects in a multi-occupancy experiment with two subjects at a room temperature range between 

20°C and 27 °C. The room temperature and humidity sensors collected the information of the 

environmental conditions. The results showed that the facial skin temperature increased in all 

subjects along with an increase in room temperature. It was also found that skin temperature 

variations are linked to the comfort states delivered by the occupants through the provided 

questionnaire. Still, the facial region should be investigated more thoroughly because the cheeks 

and nose seem to be more indicative to the thermoregulatory process of an individual. The proposed 

approach was positively evaluated by the subjects in terms of privacy issues, usefulness, and non-

intrusiveness. The system should be tested on a larger population, and in more dynamic 

environmental conditions, which indicates the limitation of the work. Also, as noticed by the 

authors, additional challenges may arise in larger space examination including more subjects 

simultaneously, for instance increased viewing distance, occlusions, and occupant registration.  

The facial temperature was also investigated in [49] with low-cost thermal camera in environmental 

chamber. The experiment was planned as initial step for HVAC control systems based on thermal 

comfort detection. The thermal camera temperature readings were compared with data from 

thermocouples for the same facial regions. It was reported in the paper that thermal camera is less 

sensitive than thermocouples and has more diffused measurements of the face skin temperature. It 

was then concluded that the thermal camera readings of the face skin temperature result with low 

accuracy of the thermal comfort prediction. Another limitation of the proposed study is that it used 

data from only 17 male respondents and females are reported to have a higher thermal sensitivity. 

Furthermore, thermal comfort model was explored in [56] for transient conditions using a three-

camera system (color, depth and thermal). The system was designed using off-the-shelf 

components: a combination of depth sensors and a color camera (kinect), to identify and observe 

the occupants. The thermographic camera (flir lepton) was used to detect the temperature of the 



occupants and a point infrared sensor (MLX90614) was used for thermographic camera calibration. 

During the experiment, two parallel measurement sets were obtained. The user’s skin temperature 

and clothing temperature were recorded continuously from different locations on the body (e.g. 

arms, chest and head) during the experiment, using the above-mentioned sensing platform, which 

was placed facing the subject. The thermal profiles were extracted for each body part. Room 

temperature as well as relative humidity were recorded in a one-minute period, using a sensor 

placed near the subject. MET (1.1 met) and CLO (0.54 clo) values were kept constant during the 

experiment. The results revealed that the difference in temperature on the human body was 

correlated with thermal comfort. The collected data also showed that the skin temperature variance 

over a small surface was highly correlated with thermal comfort. The authors suggested that the 

proposed approach could lead to a smart heating and cooling system operation which can avoid 

unnecessary contact with occupants. Further research should be directed towards system evaluation 

with different building types (residential, commercial, and industrial), followed by different 

occupant activity levels and different clothing insulation levels. Privacy concerns should also be 

investigated more thoroughly.  

Experimental setup for the camera-based system was proposed in the reasearch [59] for facial 

muscle movement (facial expressions) detection through the iMotions software using Logitech 

C925e Webcam high-definition camera. Additionally, shimmer wearable sensor platform - 

Consensys GSR Kit GSR was used containing optical pulse sensor (earlobe and finger), galvanic 

skin response (GSR) finger electrodes, biophysical leads and a wrist strap for biometrical data 

collection. The experiment was conducted in the environmental chamber where air and black globe 

temperatures were measured near the participants by Pt 100 sensors. The authors have presented 

the framework for extraction of the facial movement data through the iMotions software, and 

synchronization with the biometrical data from the shimmer sensing platform. On the other hand, 

the implementation of the air temperature data form the other sensor isn’t enabled in the proposed 

system. Although the latter system has provided relevant data, it hasn’t been validated in terms of 

thermal comfort detection property in the considered paper. 

 

4.3. Wearable devices 

 

In [48], the authors discussed smart wristband devices for detecting the personal parameters of the 

users, i.e., wrist skin temperature and also heart rate by integrating the skin temperature sensor 

HES-S3 and heart rate sensor HXM-08L. The developed system continuously kept track of 

environmental conditions with the air temperature sensor (TS-FTD04), air humidity sensor (TS-

FTD04) and CO2 sensor (C7232A5810). The experiment was performed during the summer, 

considering the indoor temperatures from 22 °C to 30°C in step of 2°C. The potential use of skin 

temperature at the wrist and its time differential was examined. The heart rate was considered in 

thermal sensation detection with a high degree of accuracy for different activities. The conducted 

research indicated that thermal sensation is affected by the indoor temperature and the degree of 

thermal sensation is determined by the activity state of the subject. The estimation model in 

strenuous exercise is found to have the highest accuracy between the examined models. The 



thermal sensation model correlation coefficient based on the skin temperature at the wrist and heart 

rate is determined in the amount of 0.941, which implies high accuracy in thermal sensation 

estimation. The wrist skin temperature was not significantly correlated with thermal sensation of 

female subjects, which might be due to a small sample size (10 human subjects). Additional tests 

with a wider number of subjects would increase the accuracy of the results, which should be 

enabled. Winter season should be investigated as well to get more credible data. The proposed 

system has perspective to be further used for the automatic control of building heating and cooling 

systems towards an improvement in energy efficiency. 

Another thermal comfort study with wearable device was conducted in [41] for the Cyber–Physical 

human centric system in the smart house. A hot-wire anemometer was used to register the air 

velocity, an SHT75 digital sensor was used for indoor temperature measurements and relative 

humidity, while an Apple watch series 4 collected the user data regarding heart rate. The results 

revealed that there is a linkage related to the environmental factors and heart rate in thermal 

comfort, which might be examined easily with commercially available sensors. Also, the 

connection between the thermal comfort and heart rate is correlated. The proposed approach has 

the perspective to be further used in an automatized regulation of heating/cooling systems. 

However, the system is unable to predict precisely enough the thermal comfort of subjects with 

respect to their preferences. The previous claim raises questions regarding the understanding of the 

thermal sensation questionnaire among subjects. It opens a new direction in TC research to explore 

if a revision is needed in the feedback collection to provide more accurate subjective responses 

from the users. In the literature [64] authors are proposing smart and less intrusive approach for 

feedback collection and in the [65] consider that it is necessary to reduce the number of questions 

in the thermal comfort questionnaires. To provide more in-depth answers, research would be 

necessary with respect to the raised issue. 

Another application of wearable devices in the thermal comfort domain was examined in study 

[17] on four examined subjects during cooling season. Move 3, was used in the study, a specialized 

sensor for measuring the dynamics of the metabolic rate, which is based on user activity. Along 

with the wearable device, the data logger TROTEC BZ 30 was used for an indoor environment 

(relative humidity, air temperature and CO2 level). Compared to the tabular metabolic rate values, 

the authors provided an insight into personal MET detection with regards to gender, age and daily 

individual dynamics. A machine learning model for MET prediction was developed and compared 

with measured MET values. It was concluded that the current tabular MET values do not provide 

precise enough results as they do not cover the dynamic changes in user behavior. However, the 

authors did not provide personal comfort models to predict the thermal preference of the users, 

which could be beneficial for further progress, possibly in the controlling of heating and cooling 

systems. Also, the experiment should be repeated on a larger sample to confirm the findings. The 

authors in [58] used the medical-grade Empatica E4 wristband as a wearable device which offers 

real-time acquisition of human-related data. It has specialized sensors for detecting physiological 

data; a photo plethysmography sensor (provides blood volume pulse, from which cardiovascular 

features such as heart rate may be derived), an electro dermal activity sensor (for skin conductivity), 

infrared thermopile (for skin temperature) and 3-axis accelerometer (captures motion-based 

activity). Data on environmental conditions (air temperature and humidity) were collected using a 



digital psychrometer thermo-hygrometer. A survey on subject thermal comfort was conducted 

every 5 min. The focus of the experiment was to study the feasibility of activity-based MET as a 

predictor for personal thermal comfort using a wearable device and environmental sensors. 

Predictive performances were noted to rise up to 8.5% with activity-based metabolic rates as a 

predictor. The conducted experiment also found to have weak prediction power for neutral thermal 

sensation. The previously mentioned findings cannot be observed without limitations. The 

conducted experiment was limited to 10 subjects, a predominantly younger population. Also, the 

experiment was conducted for only 4 weeks during summer, which leads to the conclusion that 

different weather conditions still need to be taken into account. Empatica E4 wristband was also 

used in [53] together with headband for EEG signal acquisition - Interaxon MUSE for user data 

acquisition. The authors applied wearable devices to evaluate the user’s thermal comfort in the 

workplace conditions. The whole experiment took place in climate chamber. The machine learning 

classification accuracy of approximately 76% was reported by the authors. However, the study was 

limited with the number of respondents which should be widened. Also, real environmental 

conditions should be applied in order to overcome laboratory controlled environment and the 

sources of measurement uncertainty. The wearable device Microsoft Band 2 application in personal 

thermal comfort modelling was conducted in [57] together with a Hobo Data Logger UX100 and 

temperature and humidity sensors. Additionally, the mobile application was developed to collect 

the data from the wearable device and to enable the participants to report their feedback through 

the survey. Machine learning algorithms were successfully applied to pre-processed data to predict 

the comfort level of each subject, without the further necessity for a subjective response. Both the 

personalized and general model as well as the accuracy of the personalized models seems to be 

higher than the general model, which is the main finding of the work. In addition, the use of a 

galvanic skin resistance sensor (for skin conductance) improves the accuracy of the proposed 

models. An intelligent thermal comfort control of the building’s HVAC system is proposed in the 

same work. Simulation results show a superior performance when compared to the average 

thermostat set-point use. The proposed controller should also be evaluated experimentally for a 

more reliable conclusion. The accuracy of the used sensors, application usability, and the small 

data size can be considered as limitations regarding the proposed thermal comfort model work.  

Furthermore, in [38] Hesvit S3 wristband was used for biometrical data acquisition (wrist skin 

temperature, wrist skin relative humidity and HR). Environmental data was managed through the 

thermostat (Siemens 544–760A) and recorded via data logger (Sper Scientific 800,049). HVAC 

system control strategy was developed to calculate indoor parameters using the using the wristband 

collected physiological data and predicted TSV. This approach is more difficult to apply in multi-

occupant offices since it is practically impossible for all occupants to feel neutral at the same time. 

Another limitation of the proposed system is in the wristband sensors readings. Sometimes the data 

might be measured inaccurately e.g., if the wristband isn’t worn properly (too tight or too loose). 

Another commercially available wearable device, Samsung Galaxy Watch was applied in [46] for 

heart rate information and the participants were asked to wear the device on the non-dominant hand 

while different environmental conditions. In their work, heart rate information was acquired from 

the photopletysmographic (PPG) sensor on the watch. This type of technology can be deeply 

influenced by movements of the arm or loose connection of the sensor and the skin. 



The above-described smart technologies used for detecting the inputs in personalized thermal 

comfort models are summarized in Table 4.2. with respect to the technological approach, type of 

parameter they are monitoring, type of building they were designed for and the number of subjects 

that were examined in the reviewed study.  

 

Table 4.2. Technologies used for detecting inputs in personalized thermal comfort models 

Ref Environmental 

sensors 

Sensors for 

occupant-related 

information 

Type of building Number 

of 

subjects 

Camera-based systems 

 [25]  / Kinect camera, 

Fitbit 

office room 31 

 [32] Air Temperature, air 

velocity and humidity 

sensors 

Video camera / / 

 [45] Room temperature and 

humidity sensors 

Fusion of thermal 

and RGB-D 

cameras, wristband 

temperature sensor 

office 16 

 [56] Temperature, humidity 

sensor 

Thermographic 

camera, depth 

sensor and color 

camera 

office 30 

 [59] Pt 100 air temperature 

sensor, pt 100 black 

globe temperature 

sensor, air humidity 

sensor  

high-definition 

Logitech C925e 

Webcam, shimmer 

sensor platform - 

Consensys GSR Kit 

GSR 

environmental 

chamber 

29 

 [49] / Thermal camera 

(flir one) 

environmental 

chamber 

17 

Wearable devices 

 [17] Data logger TROTEC 

BZ 30 for indoor 

environment 

(temperature, relative 

humidity and CO2 

level).  

Move 3 office 4 

 [48] Air temperature sensor 

(TS-FTD04), air 

humidity sensor (TS-

FTD04), CO2 sensor 

(C7232A5810) 

Skin temperature 

sensor (HES-S3), 

heart rate sensor 

(HXM-08L) 

environment 

chamber 

10 

 [41] Hot-wire anemometer 

sensor, SHT75 digital 

sensor 

Apple watch series 

4 

residential 

building 

6 



 [57] Hobo Data Logger 

UX100, humidity and 

temperature sensors 

Microsoft Band 2  / 3 

 [58] Digital psychrometer 

thermo-hygrometer 

Empatica E4 

wristband 

office 10 

 [38] Siemens thermostat, 

sper scientific data 

logger 

Hesvit S3 wristband office 24 

[53] Climate chamber Empatica E4 

wristband 

Climate chamber 14 

[46] Thermocouples, 

anemomometer, RH 

sensor, globe 

thermometer 

Samsung Galaxy 

Watch 

Experimental 

infrastructure 

10 / 10 

/13 

Connected sensor systems 

 [33] Climate chamber Polar H7 ECG 

strap, MetaMAX 

3B spiroergometer 

sensor, Shimmer 

temperature sensor, 

gSKIN® 

bodyTEMP 

patches, in - ear 

Bluetooth temp. 

Sensor (Cosinuss) 

three climate-

controlled 

chambers 

25 

 [34] iButton for air 

temperature near 

subject 

iButton device (skin 

temperature), Polar 

H7 strap (heart 

rate), small-size 

cell-phone for 

accelerometer data 

(activity levels) 

/ 14 

 [44] Air temperature sensor 

(Velocicalc 9545, TSI 

Inc.), black globe 

temperature sensor 

(LM35, TI Inc.), air 

relative humidity 

sensor (Velocicalc 

9545, TSI Inc.), air 

velocity sensor 

(Velocicalc 9545, TSI 

Inc.) 

Skin temperature 

senor (Exacon D-

S18JK, Libelium 

Co.), Pulsioximeter 

(heart rate sensor, 

Libelium Co.) 

office room 20 

 [47] DHT-22 sensor Heat flux sensor, 

thermocouple 

/ 18 



 [50] Various sensing 

devices (Arduino mega 

2560), temperature, 

wind velocity, air 

humidity, PM and CO2 

sensors 

 /  

(MET and CLO 

values are used as 

constants from the 

tables) 

office 12 

 [51] Net of sensors that 

perceives 

environmental 

conditions 

/ 

(MET and CLO 

values are used as 

constants from the 

tables) 

campus building / 

 [55] Wind speed, humidity 

and temperature sensor 

For personal 

parameters, data 

entered from the 

tables 

university 

research room 

30 

 [61] Air volume sensor, 

carbon dioxide sensor, 

fine aerosol sensor,  

temperature sensor and 

humidity sensor 

/ 

(MET and CLO 

values are used as 

constants from the 

tables) 

/ / 

 [63] Air temperature, 

ambient light level 

sensors 

BLE proximity 

beacon (Estimote 

proximity beacons), 

motion sensor 

business (library,  

public or study 

gathering space, 
lecture hall, 

classroom, large 

open-plan studio) 

52 

 

From the conducted analysis, it can be concluded that in the considered thermal comfort studies, 

the technologies for data acquisition are based on the network of connected sensors. The principle 

for environmental data collection is similar through the literature and is based on the air temperature 

sensors in combination with various sensing devices that perceive environmental conditions i.e., 

relative humidity, CO2, light level and wind speed sensors. Also, some experiments are conducted 

in the climate chamber with controlled environmental conditions regulated through the thermostat. 

User-related data acquisition is more complex and technologies in this regard are divided on the 

connected sensor systems, camera-based systems and wearable devices. Figure 4.2. shows the 

frequency of thermal comfort technologies application through the considered literature (the 

analysis was obtained mainly based on the references from the Table 4.2.).  

Connected sensor systems are the most common technological approach in the thermal comfort 

experiments since it is the most flexible in terms of sensor application. This approach is found in 

the proof-of-concept experiments, to investigate the importance of particular inputs in thermal 

comfort modelling. It enables the application of various sensors for data collection and is not 

limited by the sensor positioning. It enabled the application of chest strap sensor for heart rate data, 

spiroergometer sensor, temperature sensors, temperature sensor patches, in - ear Bluetooth 

temperature sensor, pulsioximeter, heat flux sensor, thermocouples, proximity beacon and motion 

sensor to acquire user-related data combined with environmental sensors. However, this approach 



is restricted for the application within experiments since it is based on the raw sensors setup which 

is rather unpractical for real-scenario in the buildings.  

Camera-based systems are established on contactless principle. Various recording technologies 

have been reported through the literature to capture different inputs for thermal comfort modelling. 

Thermal cameras capturing skin temperature recordings are most commonly used. Kinect camera 

and video camera were used for MET and CLO values determination through image recognition 

and pose detection. Additionally, experimental setup was proposed for facial muscle movement 

(facial expressions) detection through the iMotions software using high-definition web camera. 

However, the latter approach wasn’t validated in the considered paper. As much as the camera 

based systems are non-intrusive to the users, their application might raise privacy concerns since 

the users might feel uncomfortable due to the fact that they are being recorded. Also, data collection 

is limited by the camera angle and the number of the people in recording frame. Another aspect 

worth reconsidering is the accuracy of the data collected through the cameras. It was concluded in 

the [49] that thermal camera readings of the face skin temperature result with lower accuracy when 

compared to the thermocouples. On the other hand, when determining the MET values from the 

user’s behavior, the individual differences between the users are still not properly included. Further 

developments could be directed to the privacy issue, reading accuracy and more efficient detection 

in the circumstances when a large sample of occupants is involved. 

Wearable devices represent integration of the sensors for the user-related inputs in one compact 

device which is non-invasive and practical for users to carry during the day. Through the literature, 

commercial wearable devices were used most frequently in form of the wristband and belt 

attachment. Authors in [48] have designed their own wristband device. By using wearable devices, 

the data on the user’s heart rate, wrist skin temperature, activity-based metabolic rate, electro-

dermal activity, and wrist skin relative humidity can be collected in various combinations, 

depending on the device selected. This approach seems to be promising for the users in the 

buildings since it is practical, non-intrusive and this kind of devices is already commercially 

available. However, wearable technologies are not without limitations. The data readings might be 

inaccurate if the device isn’t worn properly (i.e., too tight, or too loose). In some situations, the 

accuracy of the sensors should be additionally investigated.  

 

 

Figure 4.2. Technologies used for detecting inputs in personalized thermal comfort models 



5. DATA PROCESSING 
 

The personal comfort models differ from the conventional ones because they are developed 

individually for the users. Unlike conventional systems, personal comfort models are considered 

as data-driven because they rely on continuous collection of relevant data with appropriate 

techniques or sensing devices which are discussed and categorized in the previous section. Data-

driven approach results with a huge amount of data used as input to the models aiming to predict 

the future thermal comfort of the individual. Along with accurately defined inputs and 

technological sensing devices, appropriate data processing is crucial in the personalized thermal 

comfort approach. Different machine learning (ML) and statistical modeling techniques are applied 

when creating personalized thermal comfort models [47]. Statistical analysis is used for defining 

the relationship between the parameters, while ML algorithms are applied for learning from the 

collected data and predicting the values of the thermal comfort indicators. 

Through the literature a great variety of machine learning methods are used for classification and 

prediction of the thermal comfort indicators, based on the inputs selected for the experiment. Some 

studies also considered more than one algorithm to evaluate which one has the best performance. 

Most commonly used algorithms are extracted in the Figure 5.1., using references from the Table 

4.2. According to the Figure 5.1., Support Vector Machine (SVM) is the most represented machine 

learning technique in the processed literature, with 8 studies applying it for the thermal comfort 

prediction, followed by Random Forest (6 studies) and Artificial Neural Network (ANN) (4 

studies). SVM is reported to be one of the most popular supervised learning approaches in general. 

It can perform both linear classification as well as non-linear classification by adopting the kernel 

approach [57]. 

 

 

Figure 5.1. Machine learning techniques applied in thermal comfort modelling  



 

In study [34], the authors developed 14 models for each subject with various machine-learning 

algorithms. Their data processing was conducted with a pack-age of “caret” under R which 

considers over 200 algorithms. Four groups of algorithms were applied: linear methods (Logistic 

Regression and Linear Discriminant Analysis), non-linear methods (Support Vector Machine, K-

Nearest Neighbors, Neural Network, and Naïve Bayes), trees and rules (Classification and 

Regression Trees, J48 Decision Tree, and Rule-Based Classifier), and ensembles of trees (Bagged 

Classification and Regression Trees, C5.0, Stochastic Gradient Boosting, Random Forest and 

Random Forest by Randomization). Each model should be evaluated to assess its individual 

thermal comfort prediction. In the [34], the “Ensembles of Trees” category is shown to have the 

best performance in personal comfort model development. In studies [55] and [66], the proposed 

models were compared to conventional ones. However, a comparative evaluation among 

alternative, data-driven models or methods should be conducted to provide more significant 

conclusions. Since the model accuracy is affected by data characteristics, the crucial issue in the 

model evaluation is in the absence of specified criteria for model validation and comparison [67]. 

A detailed analysis of machine learning and statistical modelling is above the scope of this work 

and the main idea was to emphasize the importance of data processing in the personalized thermal 

comfort. For sure, more focused analysis is recommended in this area as a part of future research 

work.   



6. NOVEL TRENDS IN SMART MANAGEMENT OF THE 

HEATING/COOLING SYSTEMS  
 

Generally speaking, novel trends in smart management of the heating/cooling systems in buildings 

are reflected in the implementation of smart sensing technologies through the detection and 

decision-making process. The selection of important indicators for conditions in the observed room 

(e.g. occupant’s presence, environmental conditions etc.) and application of sensory devices for 

data acquisition is a basepoint for efficient heating/cooling adjustment. Based on the acquired 

information, the regulation logic of the heating/cooling system can be proposed to provide comfort 

to the occupants while minimizing energy consumption. The smart sensors can be applied to gather 

information about the parameters that might influence energy consumption and propose a 

regulation solution to fit the real conditions in the building.  

In the paper [68], authors developed an IoT prototype for energy-efficient building management 

assisted by the room occupancy detection. The premise of the study is that, based on the 

information about room occupancy, heating and cooling system engagement can increase the 

energy efficiency and can be optimized to provide comfortable environment to the occupants while 

being present in the room. The authors have conducted the energy–saving simulation through the 

Energy Plus simulator, and the results show that described approach can reach the average 

electricity reduction of 12 % annually (~ 9,600 kWh/y and 480 $/y). The authors have pointed out 

the importance of the room occupancy information for management in other building segments as 

well, i.e., lighting control. On the other hand, the described approach has a downside, since it does 

not provide a good performance for detecting multiple occupants entering a room simultaneously 

nor their feedback on the provided environmental conditions. Occupancy of the room information 

and the outdoor temperature conditions for the thermostat–based HVAC system with natural gas 

furnace and a direct expansion cooling coil and the condensing unit was investigated in [69] for 

different geographical conditions. The simulation was conducted for five representative cities for 

distinctive climate zones in the United States (Fairbanks, New York City, San Francisco, Miami, 

and Phoenix). The authors investigated different HVAC self-coded controlling strategies 

combining three thermostat types (always on, schedule-based, and occupancy driven) with two 

control algorithms (fixed setpoint and adaptive control) considering the application of the sensing 

devices to determine the occupancy of the room and the outdoor temperature conditions. Authors 

have drawn significant conclusions regarding different applied cases compared to the standard 

“always-on” thermostat with a fixed setpoint as a reference. For the fixed setpoint scenario, the 

results were as follows: When using a schedule-based thermostat, the heating system is working at 

12 °C (heating) or 32 °C (cooling) during the time between 8 a.m. and 5 p.m. (work/school time). 

Otherwise, the heating setpoint is 21 °C, and the cooling setpoint is 23°C. This approach can reach 

energy saving impact from 13 % up to 38 %, depending on the city (max. ~10 MWh in Miami). 

This approach resulted in an increased discomfort ratio of up to 20 %. 

- The occupancy-driven thermostat activates fixed setpoint temperatures (21 °C / 23 °C) 

when the occupant is in the object, and when the house is vacant 12 °C / 32 °C regime is activated. 



This model can save up to 34 % of the consumed with a less significant increase in uncomfortable 

level. 

The authors tried to reach an increased comfort level for the occupants and investigate energy 

consumption, considering the scenario with adaptive setpoints which change with respect to the 

sensed outdoor temperature: 

- The “always-on” thermostat in this scenario can save up to 54 % of the used energy. 

- Schedule based adaptive setpoints can raise the energy saving impact up to 67 %. 

- Occupancy detection can provide energy saving of 63 %. 

The best comfortable ratio was evaluated [15] for the “Always on” mode with the adaptive 

setpoints, particularly for the New York city and San Francisco (98,7%). It is important to highlight 

that the provided results are based on the simulation, without the feedback from the occupants and 

the real environment conditions together with user evaluation would be useful for more meaningful 

results. Also, a location of the building and the climate play a significant role for the energy saving 

potential. In [51], authors have proposed the Model Predictive Control (MPC) architecture for 

HVAC system smart management, based on the IoT and evaluated it in real environment, an office 

building (laboratory) at the University of the Polytechnic of Bari. HVAC system in the building is 

central which provides Fan Coil Units (FCUs) with water (hot / cold). The experimental laboratory 

was equipped with three FCUs, which can be regulated remotely. Smart sensors for indoor 

conditions, i.e., air temperature, carbon dioxide (CO2) level, number of occupants and energy 

consumption were installed. Actuators were also implemented in the laboratory to provide 

automatic control of HVAC system. MPC based controller was developed to detect the most 

efficient HVAC system regime and automatize the system control in order to optimize both thermal 

comfort and energy savings. The latter approach resulted with the reduced energy consumption of 

approximately 15 % – 20 % with average daily savings being 18.6 %. The experimental setup was 

compared with traditional thermostat control system with indoor temperature setpoint of 22 °C 

during the work hours. The uncertainty in estimation of input parameters, i.e., humidity and 

occupant number is noticed which could be a possible drawback for the accuracy of the model. 

Additionally, the occupant’s thermal comfort was derived from linearized Predicted Mean Vote 

(PMV) index, and the real - time user feedback on the comfort would be significant indicator of 

the provided system. Further on, authors in [70] have simulated the work of a central heating system 

with respect to the outside air temperature and humidity, indoor air temperature, and presence as 

monitored parameters. The proposed approach allows the operation of the heating system based on 

the specified rules (occupants presence, outside temperature threshold) and could be useful in 

reducing the energy consumption. The authors have used the energy source (fuel) price simulation 

as the indicator of the consumption savings. For 50 h of continuous proposed system performance, 

the fuel cost can be decreased by $10.84 (~36 L, considering fixed fuel price of 0.3002 $/L) for 

one room. In order to obtain substantial data, a real environment experiment should be worked out. 

 



In the study [71], authors proposed the IoT upgrade for the decentralized Variable air Volume 

(VAV) HVAC system which is characteristic for the office buildings and the prototype was 

demonstrated in the University building. The system uses sensor measurements (air temperature, 

CO2 level, air humidity) together with forecast on weather, heating load and occupancy. The user 

comfort is calculated from the [15]. The sensor measurements are implemented in the Model 

Predictive Control (MPC) which determines the minimal required energy for cooling while 

maintaining the comfort of the users. With the latter approach, energy savings can be reached up 

to 20 %. However, similar to the other studies, the authors haven’t included the user feedback about 

the comfort in the office. In [71] a platform for energy management in public buildings was 

developed for electrical energy reduction through HVAC and lighting system control based on 

human presence detection. Temperature, humidity, luminosity, and electrical power measurements 

were implemented and linked with user presence information (through an identification card reader 

for students and a Bluetooth beacon for external users). This way, unnecessary work of HVAC and 

lighting systems in unoccupied areas can be avoided and energy consumption can be reduced. The 

authors included the sociological aspect in their approach as well by trying to affect the behavior 

of the users through raising their awareness about consumption with planned notifications in the 

belonging application with rewarding mechanisms. The provided platform resulted in a change in 

the lighting system work and 40 % savings in energy waste from lighting. Energy savings in the 

heating system were not evaluated for the proposed approach, and neither was user comfort 

considered, which could be a critical limitation for the real-case implementation of the described 

approach. A slightly different work was approached in the study [72], where IoT sensors were 

implemented for the reconstruction and monitoring of heating pipe networks within community 

heating systems with gas-fired boilers. The system operation and control of temperature and flow 

were upgraded with respect to the changes in outdoor temperature. With the decrease in the outdoor 

temperature, the temperature of the water supply increases, and the circulating hot water flow 

changes adaptively, which enables the energy-efficient work of the system. Based on the proposed 

features, the authors evaluated the benefits of the novel approach. The heat source, exchangers, and 

the system have 33.98 %, 17.93 %, and 7.52 % of power-saving potential. The primary and 

secondary pipe networks consumed about 24.13 % less power after the upgrade. The provided 

work, however, focused only on the technical aspect, neglecting the thermal comfort feedback from 

the users. It can be concluded from the existing studies in the literature that the current operating 

settings in the heating and cooling systems in the buildings have energy losses which could be 

reduced following the novel approach of sensing important indicators of energy consumption and 

modifying the working regime accordingly. The room occupancy information is the most 

prominent information for the heating / cooling regime setup since the operation strategies were 

developed to follow the number of occupants in the room(s) and adjust the heating and / or cooling 

accordingly. When the occupants are not present in the room, the environmental control can be off 

or at fixed setpoints which potentially consume less energy. As presented in detail through the 

paper, crucial aspect worth investigating is also the user’s subjective evaluation of the thermal 

environment through the personal thermal comfort investigation. This approach could provide 

information about the satisfaction of the users with the environment and pave the way for new user-

centric approaches in heating and cooling systems.  



Table 6.1. Application of the sensing technologies in the heating / cooling systems and energy 

saving potential 

Paper Type of system Data collection Thermal comfort Energy savings 

[69] Thermostat – based 

HVAC system with 

natural gas furnace 

and a direct 

expansion cooling 

coil and condensing 

unit 

Occupancy of the 

room, outdoor 

temperature 

conditions 

 

Adaptive 

(ASHRAE 55) 

Fixed thermostat setpoint: 

schedule based: 13% - 38%, 

occupancy driven: up to 34 % 

Adaptive thermostat setpoints: 

“Always-on”: up to 54 %, 

schedule based: up to 67 %, 

occupancy driven: up to 63 % 

[51] Central HVAC with 

Fan Coil Units 

(FCUs)  

Air temperature, 

CO2 level, number 

of occupants and 

energy 

consumption 

PMV index 15 % – 20 % , average daily 

18.6 % 

[70] Central heating 

system 

Outside air 

temperature and 

humidity, indoor 

air temperature 

and presence 

sensors 

/ During 50 h, fuel cost can be 

decreased by $10.84 (~36 l, with 

fixed fuel price of 0.3002 $/l) for 

one room 

[71] Decentralized 

Variable air Volume 

(VAV) HVAC 

system 

Air temperature, 

CO2 level, air 

humidity, weather 

forecast, heating 

load and 

occupancy 

ANSI/ASHRAE, 

2013 

Up to 20 % 

[68] VAV HVAC system Room occupancy / Electricity reduction of 12 % 

annually (~ 9,600 kWh per year) 

[71] HVAC and lighting 

system 

Temperature, 

humidity, 

luminosity, 

electrical power 

and user 

presence 

/ 40% savings - on lighting 

[72] Community heating 

system with gas-

fired boilers 

Outdoor 

temperature 

/ ~24.13% 

 



7. CONCLUSIONS AND FUTURE DIRECTIONS IN THE FIELD 
 

Following the Smart City paradigm, trends in the heating and cooling systems in buildings are 

reflected in the application of smart technologies through different segments, enabling advanced 

operation and regulation strategies. Through the literature, various studies have investigated the 

implementation of the sensing devices to detect the crucial indicators of the energy consumption 

for the heating and cooling systems and develop regulation mechanisms to provide a more 

comfortable environment for the occupants. This work has provided a critical review of 

technological solutions used in thermal comfort studies with an emphasis on smart technologies. 

Additionally, it provided a systematization of inputs considered in thermal comfort modelling, as 

well as a brief insight into the models used in the studies related to the thermal comfort. According 

to the herein obtained, review the following main conclusions can be derived as follows:  

 environmental inputs considered in provided literature mostly rely on variables defined by 

P.O. Fanger: air temperature, air relative humidity, air velocity, and mean radiant 

temperature. On the other side, the outdoor meteorological conditions, CO2 level, black 

globe temperature and partial pressure in the observed environment are not included in all 

research studies related to the thermal comfort modelling. In that sense there is a necessity 

for additional evaluation of standardized approach, 

 correlation between variation of the skin temperature (hands, face) and heart rate with 

change in thermal comfort of user through literature is well investigated. With respect to 

the previous findings, the skin temperature has been found as the most common input in 

thermal comfort studies besides frequently used MET, followed by CLO, heart rate and 

skin conductance, 

 additional parameters are also included as indicators for thermal comfort of individuals 

such as: EEG signals, skin heat flux, sweat rate, activity rate, aural temperature, body 

position, core temperature, facial expression. It was also found that further research is 

necessary in this regard to draw more relevant conclusion, 

 technological solutions for thermal comfort detection in data-driven models are based on 

network of connected sensors. The environmental data collection is acquired through the 

air temperature sensors in combination with other sensing devices that perceive 

environmental conditions i.e., relative humidity, CO2, light level and wind speed sensors. 

 user-related data acquisition is found to be more complex and technologies in this regard 

can be divided into connected sensors systems (which are the most represented in the 

conducted review), followed by camera-based technologies and wearable devices. Specific 

technological solutions have certain limitations, such as for instance, wearable devices, 

which seem to be promising for the users in the indoor conditions since it is practical, non-

intrusive and this kind of devices are already commercially available. However, the data 

readings might be inaccurate if the device isn’t properly worn, so future research studies 

should consider this fact during experimental investigations, 

 certain approaches in data-driven thermal comfort modelling only update classic models 

with real-time data, while others have developed their own models. When designing the 

system, solutions can provide real-time information. However, they generally do not 



consider individual differences. In most studies, MET and CLO are taken as constants from 

tabular values, despite the fact that such approach has shown to cause errors of up to 20%. 

Several experiments addressed this problem by setting sensors on users, most often in form 

of wearable device or recording them through the camera-based technologies to detect 

individual response through time. Although mentioned approach contributes to the 

reduction of the above-specified error, the exact error reduction amount should be 

determined more accurately. Thus, there is the necessity for the future research work, 

 the importance of machine learning in data-driven thermal comfort modelling is found to 

be crucial. The prediction of personal thermal comfort, based on sensor readings, as well as 

potential future advanced operation of building systems (with reduced sensor application) 

are the main benefits of machine learning approach in personal thermal comfort. 

It can be concluded that still no technology is mature enough for general application because the 

conducted experiments have specific limitations. For instance, a limited sample of subjects 

(occupants), inadequate examined temperature range, or sample of tested activities, etc. Regarding 

future research work in the field, the following issues are noted:  

 many proposed technological solutions are designed to be compatible with heating/cooling 

management systems in buildings, which is potential path to greener building energy 

management systems. Future work in this area should be focused on testing and integrating 

TC models with intelligent HVAC management in smart buildings to improve energy 

efficiency of buildings. This could be accomplished through development of new 

personalized models tailored for individual TC and adjusting environmental parameters for 

purposes of both reducing the energy consumption and increasing indoor environmental 

quality, 

 applicability of TC questionnaire should be investigated more thoroughly. Based on the 

conducted analysis, it is indicated that compatibility analysis of classical questionnaire with 

new data-driven models is needed, 

 a detailed data processing analysis by using machine learning and statistical modelling is 

necessary in this area as a part of future research work, 

 evaluation among data-driven thermal comfort models should be conducted and somehow 

standardized to set basis for accurate comparison of various modelling approaches 
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Abstract 
 

Improving the efficiency of building energy systems is crucial to reach a goal related to the high – 

performance building, particularly in the space heating and air - cooling domain, which are 

considered as leading energy consumption systems in buildings. Current trends in the smart 

building paradigm allowed efficient implementation of user-centric approach in personal thermal 

comfort modelling. The potential technological solutions in that sense can bring various benefits 

leading towards improvement of the building energy performance. Existing papers published in the 

Scopus and Web of Science database have been reviewed in order to investigate a state of the art 

related to experimental practices in the development and application of monitoring technologies 

for personal thermal comfort. Consequently, the work brings insights in some of the main research 

findings in the area focusing on (I) inputs that affect personal thermal comfort, (II) smart 

technologies and methods used for sensing and the detection of defined inputs and (III) insights 

into the approaches of collected data processing. Parameters considered in reviewed literature rely 

on environmental and personal variables. Based on the conducted review, it can be indicated that 

room air temperature, relative humidity, air velocity and mean radiant temperature (MRT) are 

frequently used environmental parameters in thermal comfort modelling. Among user – related 

indicators in the considered literature, skin temperature (hands, face) and metabolic rate (MET) are 

found to be the most common, followed by clothing insulation (CLO) and heart rate data. Some 

additional parameters are also found to be influenced by thermal comfort of individual (skin 

conductance, brain activity, heat flux, sweat rate, aural temperature, body core temperature). 

Subjective response from users is still unavoidable and recorded through questionnaires. The 

results of review indicated that technological solutions for detection of thermal comfort parameters 

in data-driven models are mainly based on network of connected sensors, and can be divided into 

camera-based technologies, wearable devices and connected sensor systems. Finally, open 

questions and gaps that inquire further research were also detected and discussed in detail. 


