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Scalable Data Processing Model of the ALICE Experiment in the Cloud

Abstract

This thesis proposes an optimization strategy for scalable Big Data processing in a heteroge-
neous Cloud. The resource needs of CERN's ALICE experiment are reviewed as a motivating
example. The thesis examines how to efficiently process and optimize the processing of
resource-intensive tasks on a heterogeneous Cloud infrastructure distributed in five data
centers to meet the needs of the ALICE experiment at the Tier 2 level. The objective was to
perform research on a much larger number of tasks and resources of a significantly larger
capacity than prior studies, which focused on a smaller number of tasks and resources with
a lower capacity. The proposed and developed processing model for ALICE Monte Carlo
production is based on a centralized software-defined management approach to use hetero-
geneous resources. Algorithms for assigning tasks to heterogeneous virtual resources have
been analyzed and proposed. The proposed algorithms are based on the selected Evolution
Strategies metaheuristic that has not yet been used in this domain, namely Evolution Strategies
task scheduling, Evolution Strategies task scheduling with Longest Job First broker policy,
and Evolution Strategies task scheduling with Shortest Job First broker policy. The Cloud
system model is implemented using the open-source CloudSim simulator. ALICE Monte
Carlo production job requirements are entered into the simulation model as a workload created
in SWF format adapted to work in the Cloud simulator. The results of the simulation perfor-
mance of the reference implementation under different loads were analyzed and compared
with the Genetic Algorithm from the same group of algorithms. The obtained results show
multiple improvements. The proposed data processing model enables centralized software
management of heterogeneous Cloud infrastructure, optimizes measured metrics, improves
resource usage, and achieves the system's scalability.

Keywords
ALICE, Big Data, Cloud computing, data processing, distributed management, Evolution
Strategies, heterogeneity, resource management, scalability, software-defined, system simula-
tion, task scheduling
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Model skalabilne obrade podataka ALICE eksperimenta u oblaku

Sažetak

Ova disertacija predlaže strategiju optimizacije za skalabilnu obradu velikih podataka u
heterogenom oblaku (engl. Cloud). U radu se kao motivirajući primjer razmatraju potrebe
za resursima CERN-ova ALICE eksperimenta. Rad istražuje kako učinkovito obraditi i
optimizirati obradu resursno-intenzivnih zadataka na heterogenoj infrastrukturi u oblaku
raspored̄enoj u pet podatkovnih centara kako bi se zadovoljile potrebe na Tier 2 razini ALICE
eksperimenta. Cilj je bio provesti istraživanje za višestruko veći broj zadataka i resurse znatno
većeg kapaciteta u odnosu na dosadašnja istraživanja koja su provod̄ena na manjem broju
zadataka i resursima manjih kapaciteta. Predloženi i razvijeni model obrade za ALICE Monte
Carlo produkciju temelji se na centraliziranom softverski definiranom pristupu upravljanja
korištenjem heterogenih resursa. Analizirani su i predloženi algoritmi za dodjelu zadataka
heterogenim virtualnim resursima. Predloženi algoritmi temelje se na odabranoj metaheuristici
evolucijskih strategija (engl. Evolution Strategies) koja dosad nije korištena u ovoj domeni,
a to su evolucijske strategije raspored̄ivanja zadataka, evolucijske strategije raspored̄ivanja
zadataka sa broker politikom kod koje prioritet izvod̄enja imaju najdulji zadaci (engl. Longest

Job First) i evolucijske strategije raspored̄ivanja zadataka sa broker politikom koja prioritet
izvod̄enja daje najkraćim zadacima (engl. Shortest Job First). Model računalnog oblaka
implementiran je pomoću CloudSim simulatora otvorenog koda. Zahtjevi ALICE Monte Carlo
produkcijskih poslova uneseni su u simulaciju modela u obliku kreiranog radnog opterećenja
u SWF formatu prilagod̄enom za rad u odabranom simulatoru. Analizirani su rezultati izvedbe
simulacije referentne implementacije pod različitim opterećenjima i uspored̄eni su s genetskim
algoritmom (engl. Genetic Algorithm) iz iste skupine algoritama. Dobiveni rezultati pokazuju
višestruka poboljšanja. Ovdje predložen model obrade podataka omogućava centralizirano
softversko upravljanje heterogenom infrastrukturom u oblaku, optimizira mjerene metrike,
poboljšava korištenje resursa i postiže skalabilnost sustava.

Ključne riječi
ALICE, veliki podaci, računarstvo u oblaku, obrada podataka, distribuirano upravljanje,
evolucijske strategije, heterogenost, upravljanje resursima, skalabilnost, softverski definirano,
simulacija sustava, raspored̄ivanje zadataka
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1 INTRODUCTION

The European Organization for Nuclear Research (in French: Conseil Européen pour la

Recherche Nucléaire, CERN) is an international organization established in 1954 whose main
area of research is particle physics. It operates the Large Hadron Collider (LHC), the largest
particle physics laboratory and most powerful particle accelerator in the world. The LHC is
located in Greater Geneva, the French-Swiss transborder agglomeration.

The most sophisticated scientific detectors and systems are used to detect, track, and
identify fundamental particles at particle physics experiments at CERN. High Energy Physics
(HEP) is a data-intensive field of research that encompasses the acquisition, processing,
storage, access, and proper interpretation of data. The expected quantity of produced data
places increasing requirements on processing, networking, and storage resources. For reliable
and efficient processing and storage of large amounts of data, it is necessary to simultaneously
develop and apply new technologies and invent new solutions and concepts. Data and resource
management are challenging and relevant problems in optimizing the entire system. This
doctoral thesis deals with scalability as a property of exceptional importance in scientific data
management. In this chapter, I outline this challenge and the motivation to overcome it.

1.1 Motivation and challenges

The motivation for the research of this doctoral thesis finds its origin in the fact that the huge
data growth requires an infrastructure that must keep pace with the growth, must adapt to the
new requirements, expand in the shortest possible time, and in addition, maintain the lowest
possible costs of any modifications. The number of information to be analyzed increases
exponentially while the speed of processing them decreases. The increasing computing power
and development of new and more advanced processors can accelerate the real-time analysis
of large data sets and enable concrete, timely and valid information obtained from the data set.
In recent years, the Cloud has emerged as an interesting infrastructure option for implementing
scientific workflows for modeling experiments and outsourcing data storage and application
execution. Building a Cloud infrastructure is complex and challenging on many levels, and the
heterogeneity of the systems included in this type of infrastructure is particularly important.
As heterogeneous resources are rapidly integrated into the Cloud, adaptable strategies and
abstraction techniques are required for efficient resource management.
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The Information Technology (IT) sector faces many challenges that need to be addressed
promptly. Strong data growth and data traffic require investment in Cloud solutions, software
applications, and Big Data analytics. Such dynamics demand the IT infrastructure to be agile
and easy to use while at the same time being reliable and available. The data center needs
to be adapted and improved to ensure flexibility, reliability, secure integration of solutions
into existing IT infrastructure, and fast configuration to new requirements. New solutions
should meet the criteria of scalability in size, performance, safety, and reliability. All system
components are interconnected and interdependent as they use common hardware resources,
making scaling difficult and creating performance problems with large data flow and a large
number of users.

This thesis aims to explore approaches to support the scalable processing of data at massive
scales. The goal is to find a computation model which is flexible enough to encompass
commonly distributed architectures and the specificities of the hardware architecture. For this
purpose, systematic research on data management possibilities will be carried out to identify
algorithms that effectively distribute workflows to several geographically distant sites in the
Cloud. The system model will be leveraged by representative Big Data real-life applications
from particle physics that have challenging resource requirements.

The LHC experiments are the source of large amounts of physics data. According to
CERN data from 2017 [1], the LHC experiments surpassed 200 PB of archived data. After the
detectors upgrades, a significant increase in the generation rate and the amount of important
data is expected, in order of exabytes (EB). The scheduled LHC upgrade [2] will result
in increased demands for resources that will be challenging to complete with currently
available computing and storage capacity. The goals of the ALICE (A Large Ion Collider
Experiment) experiment upgrade [3] from 2019 to 2021 were to upgrade sub-detectors and
expand computing infrastructure. The goal for the future is to minimize the volume of
data obtained in the collision of different particles. The data volume reduction will be
achieved through several processing phases parallel with data collection. The Worldwide
LHC Computing Grid (WLCG) [4] is continuously upgraded and will participate in data
processing and storage with its Tiers. The LHC ALICE Raw and Monte Carlo use cases are
multidisciplinary in nature and challenging in content. Long-running Monte Carlo simulations
generate enormous volumes at high velocities and require resources with high performance
and data sharing on Cloud infrastructure. Therefore, additional computing resources are
especially needed for simulations of physics events.

Scalability is a property of great importance in the growing field of Big Data management.
The joint work of many researchers worldwide is made possible by scalable distributed
infrastructures and Big Data technologies. Technologies for storage and processing must meet
the experiments' requirements for achieving the system's scalability under new and chang-
ing conditions. Scaling data collection systems is a multidisciplinary problem that requires
the development of models, structures, and technological solutions. CERN research and
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development activities are focused on the application and exploitation of the potential of new
technologies for data analysis and system control and architectures that will bring heterogene-
ity to data centers in the components of processing, storage, and networking. Heterogeneity
and parallelism are inevitable concepts to meet stringent performance requirements.

Moreover, High Performance Computing (HPC) is likely to be part of the future HEP
computing infrastructure since LHC's needs today are equivalent to ∼ 30 PFLOPS.

My work in data-intensive science and the personal experience of direct research work
on monitoring and analyzing the data quality collected by the ALICE detector on Data
Quality Monitoring and Offline critical real-time operation tasks during Run 2 (2015-2018) at
CERN has led to an interest to further research scalability and improve its correlation with
other parameters in the realm of Big Data in new and dynamic conditions, primarily in the
Cloud. Analyzing the ALICE productions, scalability properties in physics data processing
are recognized as of exceptional importance.

The motivation for this research is complementary to the strategic goals for achieving
digital sovereignty and competitiveness of the European Union through the construction
of supercomputers and the participation of the Republic of Croatia in them. In 2019, the
Republic of Croatia received the status of an associate member of CERN. This is a path
and effort to contribute to developing solutions and managing large amounts of data from
LHC experiments at the level of the national e-infrastructure for high performance and Cloud
computing called HR-ZOO (Croatian scientific and educational Cloud) [5].

This thesis will consider the usage of a heterogeneous Cloud ecosystem for ALICE data
processing at Tier 2 of the WLCG infrastructure for subsequent data collection periods. Tier
2 consists of resources provided by well-networked universities or scientific institutions
organized either as separate data centers or federations of data centers. Tier 2 participates in
asynchronous, offline ALICE Monte Carlo production data processing.

Such an ecosystem defined by heterogeneity requires the development of software tools
to manage applications and resource utilization. Increasing the usage efficiency of current
heterogeneous Cloud platforms can be achieved in many ways. One is in the resource
management aspect attained by software-defined support for scalable, dynamic, and flexible
data processing.

1.2 Hypothesis

This research is based on the fact that Big Data has great potential and the ability to facilitate
and advance data-driven discovery in science and industry. Scalability is a property with great
potential and is extremely important for Big Data. Scalability is the primary focus of Cloud
computing and one of the crucial issues in the research field. It is needed to constantly explore
scaling capabilities and find scalability improvements in the relevant dynamic research area.

Resource scalability in correlation with other computing paradigms can optimize overall
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performance and achieve improved efficiency and reliability of a modern data system. Scala-
bility is the issue in large-scale computing dominantly influenced by the selection of resource
management algorithm that involves the dynamic allocation of heterogeneous resources. A
software-defined approach would enable agility and the ability to adapt to the dynamic needs
of data-intensive and computing-intensive workflow in the Cloud environment. Scalability
testing is a crucial phase of Cloud system development. Relevant scalability performance
metrics need to be collected and measured, and their impact interpreted to test scalability and
achieve better performance for increasing workload demands.

1.3 Research methodology

The scientific research in this thesis is conducted in a manner that the modeled and simulated
system reflects the realistic Cloud computing system in a scientific research environment
incorporating dynamic heterogeneous resources.

The model includes a central controller that has information about the state of used re-
sources and manages the allocation of resources through the dynamic task allocation algorithm.
The chosen Evolution Strategies algorithm inspired by the theory of evolution and natural se-
lection represents an intelligent way to achieve scalability and increase resource utilization by
matching the tasks with the best corresponding virtual machine (VM) configuration. Through
this approach, the jobs are distributed over several data centers using optimal allocation.

Simulation abstracts functionalities and behaviors of physical and virtual resources. The
scalable processing model in this thesis focuses on the technique for allocating tasks to
VMs considering job requirements focusing on the CPU and RAM components and QoS
aspects. Differently configured VMs are shared multi-core resources fixed on distributed data
centers' hosts that work simultaneously.

The approach focuses on the heterogeneous Cloud environment for scientific data from
the HEP domain, where most jobs are resource-intensive, especially on ALICE Monte Carlo
production jobs. Monte Carlo production jobs are asynchronous processes taking more than
70% of the total ALICE CPU wall time. For this research, simulation jobs were configured
for a single-core execution and execution on 8-core resources. Monte Carlo jobs are executed
as batch jobs with no fixed execution deadline (typical job duration is 6 hours). These jobs are
independent and do not have enormous storage or network requirements. Their performance
depends primarily on the CPU and memory capabilities. The cost for simulating one event
in Run 2 was 24000 HEP-SPEC06 (HS06) [6]. It is estimated to simulate 1× 109 events
in Run 3. As input, Monte Carlo (MC) simulation jobs use a limited file size that is the
output generated by event generation (∼ 200 MB). MC Event Summary Data (ESD) and
MC Analysis Object Data (AOD) are the output of the simulation. Network requirements for
uploading simulation output are not high (∼ 350 MB). Jobs require at least 2 GB of RAM per
core and the same amount of swap memory and disk space [7].
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The data from Monte Carlo production are collected from MonAlisa and adapted for
multi-core processing. The workload is created from the specified data. Scalability testing
is performed under multiple load levels, from 1000 to 20000 jobs dynamically arriving
in varying intervals. Performance metrics representing the system qualities of interest for
conducting the system and scalability analysis are collected, analyzed, and compared.

1.4 Thesis outline

The outline of this thesis is shown in Figure 1.1. Chapter 1 explains the motivation and
challenges in data processing of the ALICE data. It includes the thesis' objectives, set research
hypothesis, and research methodology. Chapter 2 describes the ALICE detector components
and discusses the recent upgrade of the experiment carried out in parallel with the work on this
research. These upgrades will result in challenges in managing a large volume of scientific
data that must be considered for optimizing processing performance. This chapter discusses
the challenges in the data processing. Chapter 3 identifies the necessary components and
methodology for scalability analysis of ALICE Monte Carlo processing on a heterogeneous
Cloud using simulation. The scalability property is analyzed and the characteristics of the
software-defined concept are presented. A review of Cloud computing simulators is given
and the appropriate simulator is selected. Chapter 3 also provides a literature review on this
research issue. Chapter 4 describes the heterogeneous Cloud infrastructure and all data center
components that support the Cloud system. The proposed data processing model of ALICE
offline production is presented. Chapter 5 presents and applies a software-based Evolution
Strategies metaheuristic algorithm to optimize Cloud resource allocation. Finally, Chapter 6
summarizes the contributions and provides an outlook for future research on scalable Cloud
data processing.

Figure 1.1: The thesis outline.
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2 THE ALICE EXPERIMENT

The ALICE experiment [8] is one of CERN's four large particle physics experiments. The
ALICE physics program and detector are introduced in this chapter, and the data processing
flow is discussed. I describe a recent upgrade of the ALICE experiment carried out in
preparation for data taking in the following LHC runs.

2.1 The Large Hadron Collider

The LHC [9] is the last element of the accelerator complex at CERN. It helps to answer
unsolved questions of the Standard Model of particle physics [10], which embodies the current
understanding of fundamental particles and forces. The LHC uses the 27 km circumference
tunnel built at a mean depth of 100 m, where counter-circulating beams collide. This circular
accelerator accelerates two beams of heavy particles called hadrons (protons and lead ions) to
obtain the highest energy collisions in the volume of about one million particle collisions per
second.

The accelerator complex accelerates protons and heavy lead ions. The protons obtained
from hydrogen atoms in LINAC 2 (replaced by LINAC 4 in 2020) are injected into the Proton
Synchrotron Booster (PSB) at 50 megaelectronvolt (MeV). With the LINAC 4, hydrogen ions
are accelerated to 160 MeV and stripped to protons. Passing through the Proton Synchrotron
(PS) and Super Proton Synchrotron (SPS), protons are accelerated to 450 GeV. They are
finally injected into the LHC, where they are accelerated for 20 minutes to 6.5 TeV. Beams
circulate inside the LHC beam pipes in opposite directions for many hours under normal
operating conditions. Particle beams circulate through a vacuum inside the LHC pipes in
opposite directions for many hours under normal operating conditions. The particles of the
LHC beam, formed in bunches, are manipulated using various magnets. Dipole magnets
hold the particles in almost circular orbits, quadrupole magnets direct the beam down to
the smallest possible size at the collision points, and accelerating radiofrequency cavities
accelerate charged particles injected in the electromagnetic field to achieve the maximum
number of collisions with high luminosity at the collision points. Heavy lead ions are produced
from a highly purified lead sample heated to around 800 °C. Lead ions enter LINAC 3 before
being collected and accelerated in the Low Energy Ion Ring (LEIR). Following that, they take
the same path as protons to achieve maximum energy.
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A Large Ion Collider Experiment (ALICE), A Toroidal LHC ApparatuS (ATLAS) [11],
Compact Muon Solenoid (CMS) [12], and Large Hadron Collider beauty (LHCb) [13] are
the four largest experiments [14] or particle detectors installed in underground caverns built
around the four interaction points of the LHC beams, as shown in Figure 2.1.

Figure 2.1: The CERN accelerator complex [15].

The ALICE detector studies heavy-ion physics and quark-gluon plasma, a state of matter
assumed to have filled the Universe just after the Big Bang. Quarks and gluons are the
elementary particles that form protons and neutrons.

The ATLAS is a general-purpose detector designed to test the Standard Model's predic-
tions, from precision measurements of the Higgs boson and dark matter to searches for new
physics beyond the Standard Model.

The CMS is a second multi-purpose detector with scientific goals similar to the ATLAS
experiment but with a different technical design. It is a cylindrical coil of superconducting
cable that generates a magnetic field of 4 T and is built around a massive superconducting
solenoid.

LHCb experiment studies the slight asymmetry between matter that dominates the Uni-
verse today and antimatter present in interactions of B-particles (particles containing the b
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quark, common in the aftermath of the Big Bang). It measures and studies the decay of
particles produced in one of the beam directions. Observing its dimensions, LHCb is the
smallest of the four detectors.

The LHC experiments share the same schedule. The schedule defines periods of detectors
taking data, maintenance, and upgrades. Technical Stops are periods intended for technology
maintenance, while Long Shutdowns (LS) are periods for experimental upgrades and changes
when there is no physics and when major operations take place in the underground areas.
Runs are periods of active data taking. The long-term LHC schedule is classified and planned
as follows (Figure 2.2):

• Run 1 (2009 - 2013)

• LS1 (2013 - 2015)

• Run 2 (2015 - 2018)

• LS2 (2018 - 2021)

• Run 3 (2022 - 2025)

• LS3 (2026 - 2028)

• Run 4 (2029 - 2032)

• LS4 (2033 - 2034)

• Run 5 (2035 - 2038)

Figure 2.2: Plan for LHC upgrade [16].
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After the LS3, an upgraded version of the LHC called High Luminosity LHC (HL-
LHC) [2] will be introduced. HL-LHC will operate at a higher luminosity. Luminosity is an
important measure of an accelerator's performance which measures the number of potential
collisions per surface unit over a given time (second). Luminosity and the volume of collected
data are linearly related. Greater luminosity means more collisions and, consequently, more
data.

2.2 The ALICE Detector

The ALICE is a general-purpose heavy-ion experiment at the LHC. It is designed to address
the physics of the strongly interacting Quark-Gluon Plasma (QGP) created in heavy-ion
collisions. ALICE started its first data taking in 2008 and the second one in 2015. In parallel
with the research process on this thesis, the ALICE LS2 upgrade took place. During LS2,
the ALICE Collaboration has significantly prepared to start collecting data with an upgraded
detector and higher integrated luminosity than in Run 2. The expected interaction rate for the
Pb-Pb collisions is 50 kHz and for the p-p and p-Pb sampling up to 200 kHz. The replacement
of the beam pipe used in Run 2 with a smaller-diameter beam pipe was needed. Reducing the
beam pipe diameter improves measurements of determining the interaction point positions.
From Run 3, the ALICE experiment will run in continuous readout mode (trigger mode was
used in previous Runs). Detectors have upgraded the electronics to improve the readout
performance. The ALICE upgrade will significantly increase the data volume transferred
from the detector electronics to the readout system.

Schematic diagrams of the detector in Run 2 and Run 3 are given in Figure 2.3 and
Figure 2.4, respectively.

Figure 2.3: The ALICE Detector in Run 2 [17].
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Figure 2.4: The ALICE Detector in Run 3 [18].

The subdetectors have to ensure the detector's maximum performance during data taking.
The ALICE apparatus comprises three main parts: the central barrel, the muon arm, and the
forward detectors. The ALICE sub-detectors are organized as individual projects with their
own organization.

Central detectors

All the detectors in the central barrel are embedded in the ALICE solenoid L3 magnet,
providing a relatively low magnetic field (< 0.5 T). The detectors of the central barrel are: the
Inner Tracking System (ITS), the Time-Projection Chamber (TPC), the Transition-Radiation
Detector (TRD), the Time-Of-Flight (TOF), the High Momentum Particle Identification
Detector (HMPID), the Photon Spectrometer (PHOS), the Charged Particle Veto detector
(CPV), the ElectroMagnetic Calorimeter (EMCal), and the Di-jet Calorimeter (DCal). These
detectors are used to track and identify particles produced at mid-rapidity. In addition, in
the same rapidity region of the central barrel but on top of the L3 magnet is an array of
large scintillators ALICE Cosmic Ray Detector (ACORDE) used to trigger cosmic rays for
calibration and alignment purposes.

The ITS is the cylindrical detector placed close to the beam line in the central barrel. ITS's
main purposes are to reconstruct primary and secondary vertices to improve the ALICE barrel
tracking capabilities in the vicinity of the Interaction Point (IP). In Run 1 and Run 2, ITS
consisted of six cylindrical layers where different silicon technologies were used for the ITS
(pixel, drift, and strip). In the LS2 upgrade, the ITS is replaced by seven concentric layers of
monolithic pixel detectors [19] to improve the tracking performance and allow detailed study

10



of certain Quantum Chromodynamics theories and detection of low-particles.
The TRD is one of the particle identification detectors. It identifies electrons to study

production rates of heavy quarks triggering on electrons and jets with fast selection capability
(< 7 µs). TRD readout electronic has been upgraded in LS2. This detector is one of the most
complex LHC detector systems of 18 large modules surrounding TPC. The TPC is the main
tracking detector in the ALICE central barrel focused on hadronic physics. It is important
for measuring high transverse momentum electrons produced in central Pb–Pb collisions.
TPC has replaced the frontend and data concentrator electronics to improve the readout
performance in Run 3 and Run 4 [20]. That will allow ALICE to record the information of all
tracks produced in Pb-Pb collisions at rates of 50 kHz.

One of the detector systems dedicated to particle identification is the HMPID. The HMPID
task is to detect the Cherenkov light, light emitted when a charged particle passes through a
medium. By measuring the light's velocity and direction, it is possible to determine the mass
and type of particle.

The TOF detector precisely measures the flight time of particles from the collision point
out to the detector. That requires great time resolution performance.

Two calorimeters in ALICE are EMCal and PHOS. The EMCal is a Pb-scintillator
sampling calorimeter optimized to measure jet production rates and jet characteristics in
conjunction with the charged particle tracking in the other barrel detectors. The addendum
of EMCal, DCal detector, improves the acceptance and statistics of the measurement.
The PHOS has greater granularity and energy resolution than EMCal. This crystal-based
calorimeter measures photons and neutral mesons. It can sustain high particle densities. A set
of proportionate CPV chambers in front of PHOS aids the separation of charged particles
from photons. PHOS, EMCal, and DCal also deliver the hardware L0 and L1-level triggers to
the ALICE central trigger processor to select events with high-energy photons and electrons
in real-time to reduce data for later analysis.

Muon Spectometer

The Muon Spectrometer arm detectors are used to study quarkonia production at forward
rapidity through their decay into muons. The main components of the spectrometer are an
absorber used to filter muons from all particles coming from the background, a set of tracking
chambers (MUON Tracker, MCH), and a set of trigger chambers (MUON Trigger, MTR).
The MTR system is designed to select interesting events, the heavy quark resonance decays,
in a decision time of about 300 ns above the configurable threshold.

From Run 3, the Trigger system has two modes of detector operation, continuous and
triggered. Data loss must be reduced to the minimum to allow efficient and coordinated
data taking in a continuous readout system. The MTR has been upgraded to the Muon
IDentifier (MID). The Muon Forward Tracker (MFT) [21] is a new tracking detector

11



for Run 3 mounted into the TPC. It is going to detect and tackle the physics challenges
provided by significantly larger luminosity. The MFT supplements the muon spectrome-
ter, distinguishing muon pairs coming from charm hadron or bottom hadron decays and
thus extends the physics program and enables new measurements of charm and bottom quarks.

Forward detectors

The forward detectors are located at a small radial distance from the beamline. The Zero
Degree Calorimeter (ZDC), the Photon Multiplicity Detector (PMD), the Forward Multiplicity
Detector (FMD), the VZERO detector (V0), the TZERO (T0) and the ALICE Diffractive
(AD) are included in this group. Two identical sets of calorimeters consisting of a neutron
(ZN) and a proton (ZP) ZDC are located on both sides of the ALICE detector, 112.5 m
away from the IP. The ZDC measures the centrality in Pb-Pb collisions, luminosity in Pb-Pb
collisions, and offline event selection to differentiate background events produced beyond the
interaction zone from beam-beam collisions. The PMD measures the multiplicity and spatial
distribution of photons in each nucleus collision. It is designed of two planes with cellular
honeycomb chambers, two lead converter plates, and a support assembly. The PMD is made
of non-magnetic materials and uses gas as the sensitive medium.

The FMD provides precise charged particle multiplicity information for all collision types
in the defined pseudorapidity range. It consists of more than 50000 silicon strip channels
distributed over five rings placed at different positions along the beam pipe.

The trigger detector T0 measures the interaction time. T0 has several functions: supplying
main signals to the L0 trigger, waking up to TRD, and giving a precise start signal for TOF
particle identification.

The main tasks of the V0 are to select interactions and to reject beam-related background
events. It estimates and detects charged particles by measuring their charge and arrival time.
The AD forward detector system optimizes trigger efficiencies in selecting diffractive events,
monitors beam-gas background, and can serve as a luminometer. It comprises two modules
made of scintillator pads, one module on each side of the interaction point.

The Run 2 assembly of the V0/T0/FMD detector system is replaced by a single detector
system named FIT [22], located in the ALICE detector's forward region at positions close to
the present V0/T0 location. The FIT is designed to provide the functionality of the existing
forward detectors. The FIT system has to cope with requirements for low latency and perform
the following tasks: fast triggering, monitoring LHC background conditions and luminosity,
measuring diffractive cross-sections, monitoring beam quality, and beam-gas events rejection.
The FIT delivers the produced trigger signals to the Central Trigger System.
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2.3 Data taking system

The ALICE data processing is divided into an online part in real-time and an offline part, as
seen in Figure 2.5. Operating procedures are handled from the ALICE Run Control Center,
the central workplace for data acquisition activities in the ALICE experimental area at LHC
Point 2.

The data taking procedure used in Run 1 and Run 2 in trigger readout mode will be briefly
described here, as well as the recently undergone upgrade of the ALICE computing model.
The ALICE Central Trigger Processor (CTP) system selects events from p-p, p-Pb, and Pb-Pb
collisions in time intervals generating three levels of hardware triggers in accordance with
the LHC clock. In Run 2, the CTP was used in triggered mode receiving and distributing
trigger signals to eliminate background signals, calibration, and commissioning at a higher
interaction rate using one Local Trigger Unit (LTU) for each detector. Continuous readout of
new and upgraded detectors is going to be supported by Common Read-out Unit (CRU). CRU
interface enables the connection of the readout systems to the new system and the control
system. EMCal, PHOS, TRD, and HMPID are used as triggered-only detectors.

The ALICE Data Acquisition System (DAQ) [23] data-driven system was handling the
stream of received physics data and transfers of data over optical Detector Data Links (DDL)
to the Local Data Concentrator (LDC) computer resources, followed by processing on Global
Data Collector (GDC) where the complete events were formed and formatted for storage
by LDC machines. The LDCs stored the data in their memory, waiting for the High Level
Trigger (HLT) decision. The HLT reconstructed data to reduce the volume of physics data
by data selection and compression while keeping relevant events. Accepted data were then
transferred to the GDCs, where the whole events were built. These events were stored on
local disks in files encoded using the AliRoot [24] format suitable for Offline data processing.
The data files were finally transferred to the CERN Data Center, where they were archived
and ready to be published on the Grid (described in Section 2.4). ALICE experimental area
was interconnected with the CERN Data Center using Ethernet links.

Conditions data produced during data taking relevant to the calibration of individual
detector signals and the offline reconstruction were stored in the Offline Condition DataBase
(OCDB). The SHUTTLE framework collected and handled the gathering, processing, and
publication of the conditions data needed for reconstruction. After data processing, the
SHUTTLE registered the produced condition files in ALICE Environment (AliEn) [25] and
stored the data in the CASTOR tape system. AliEn processing software was used to store
and analyze the experiment's data. It managed distributed storage and CPU resources for the
ALICE experiment.

Stored raw and conditions data were available for offline processing and analysis on the
computing grid worker nodes (WN) using AliRoot. The AliRoot was the offline framework
for simulation and reconstruction used in Run 1 and Run 2. This ROOT [26]-based framework
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was also used for analyzing reconstructed data and preparing physics publications. Several
more systems were necessary for the proper functioning of the experiment.

The Data Quality Monitoring (DQM) system was an essential operational part of the
experiment that was giving real-time feedback on the quality of the recorded data. It used
ROOT-based software AMORE (Automatic MOnitoRing Environment) [27] to identify po-
tential issues in advance. DQM involved the online data gathering, analysis by user-defined
algorithms, storage, and visualization of the produced monitoring information gathered by
processes - agents that were publishing results in a pool later visualized through a dedicated
user interface.

The Detector Control System (DCS) has been a complex information and control system
organized in a hierarchical way connected with the DAQ, Trigger and Offline systems,
and LHC Machine. It is responsible for the safety and accurate operation of the ALICE,
remote control, acquisition, processing, and archiving of data for control, monitoring, and
configuration purposes.

The Experiment Control System (ECS) has been the main part of the ALICE control
system realized as a software layer on top of CTP, DAQ, HLT, and DCS that has been
providing an interface to the online systems and control of data processing activities on the
experiment. Central shifts during Run 2 data taking were formed around the systems of
ALICE data flow (DCS, ECS/DAQ+CTP+HLT, and DQM) to ensure high efficiency and
quality assurance during runs, especially important during Pb-Pb collisions, which are of the
utmost importance for ALICE experiment.

Figure 2.5: The ALICE data flow in Run 1 and Run 2 [28].
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Apart from the detector system upgrade during LS2, the computing system is upgraded
with the O2 system for future runs [3]. The new O2 system is located in the ALICE exper-
imental part. The goal of the computing model is to maximally reduce the data volume to
minimize requirements for storage and processing resources caused by higher luminosity and
the interaction rate, meaning significantly increased data amount in Run 3 and Run 4.

The O2 system participates in the online and offline data processing. The online part
takes place synchronously with the data taking, while the offline part of the data processing
takes place asynchronously after a few weeks or even months on the available part of the
system. The O2 system is designed to participate in all computer tasks. ALICE processing
tasks are detector calibration and reconstruction of source data, organization and user analysis,
Monte Carlo simulation, and data reconstruction simulation. In addition, it provides sufficient
capacity to store the approximate amount of one-year production data.

The O2 system consists of a network of 200 FLP (First Level Processor) and 250 EPN
(Event Processing Node) computer nodes. During the different phases of data reconstruction,
data of different formats and sizes based on time frames are generated. By switching to
continuous readout from trigger readout mode in ALICE Run 3 data processing, a basic
processing unit is no longer an event but a time frame (∼ 20 ms).

The online processing on the O2 system includes the calibration and reconstruction of raw
data from the ALICE detector. As seen in Figure 2.6, local raw data compression starts on FLP
nodes using lossless algorithms and continues on EPN nodes. FLPs will collect detector data
at speeds of about 3.5 TB/s for the period of Pb-Pb collisions via optical readout links. The
reduction and compression of FLPs form Sub-Time Frame (STF). The partially compressed
STFs are then forwarded to the EPN nodes, where the STFs bound are aggregated into TFs
for the same time period. Then, the EPNs perform data reconstruction for each detector and
further reduce the data. Thus, compressed data in Compressed Time Frame (CTF) format is
stored on EOS disks at a total peak throughput of 90 GB/s and archived at WLCG Tier 0 and
Tier 1 centers. Creating and storing CTFs completes the synchronous processing.

Data in Event Summary Data (ESD) format are produced during asynchronous calibration
and reconstruction on O2 and WLCG Tier 0 and Tier 1. Two reconstruction steps (called pass
1 and pass 2) are planned to obtain Analysis Object Data (AOD) data of a certain quality for
analysis containing the final path parameters at a given point of a physical event.

In Run 3, central shifts are formed around Data Acquisition (ECS/FLP/CTP/EPN), Detec-
tor Control System (DCS), and Quality Control (QC/PDP/EOS/GRID) systems.
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Figure 2.6: O2 data taking and synchronous processing. Adapted from [29].

2.4 The Worldwide LHC Computing Grid

The new O2 system is part of the overall ALICE computing model, including grid resources,
as shown in Figure 2.8. Grid computing is one of the key distributed computing paradigms
for supporting scientific research. The challenging management of LHC data is based on a
distributed grid infrastructure of the WLCG [30] that provides resources and supports the
smooth functioning of the LHC experiments. The WLCG is arranged in layers termed "tiers"
and includes more than 170 computer centers distributed in 42 countries worldwide, as shown
in Figure 2.7. Currently, it has a capacity of 1.5 EB of storage, 1.4 million CPU cores, and
peak transfer rates of 60 GB/s [31]. More than 2 million tasks run daily on the WLCG. Each
WLCG Tier is mainly specialized for the given role.

The CERN Data Center, located in Meyrin, Switzerland, is the center of WLCG and
represents Tier 0. Until recently, Tier 0 also provided the Wigner Research Center for Physics
in Budapest. CERN Data Center has more than 10000 servers, more than 400000 processor
cores, about 100000 disks, and more than 40000 tape cartridges [31]. Due to increased
computing needs, it is planned to build an additional energy-efficient CERN data center in
Prévessin, France, to provide computing resources for the HL-LHC. Tier 0 takes part in the
asynchronous reconstruction. Selected raw data are transferred to the CERN Tier 0 Data
Center for processing and archival storage. The network connection between ALICE and
CERN Data Center was 160 Gbps and after the upgrade, it is 1200 Gbps. Tier 0 delivers raw
and reconstructed LHC data to Tier 1 and reprocesses data when LHC is not operating. Tier 1
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consists of 14 computer centers. These centers primarily offer resources to store data from
Tier 0 and further data processing. Tier 0 and Tier 1 are connected with LHC Optical Private
Network (LHCOPN) [32]. High bandwidth network connectivity facilitates storage on both
disk and tape media.

Figure 2.7: WLCG tiers organization in 2021 [4].

The Tier 2 level consists of resources provided by well-networked universities or scientific
institutions organized either as separate data centers or federations of data centers. The basic
requirements set for Tier 2 level centers are availability and reliability. Compute-intensive
Monte Carlo simulation, associated reconstruction, and production of AODs are executed
on Tier 2 sites. It is planned that Tier 0 and Tier 1 contribute to simulation when there is
no activity. The LHCONE [32] supports job and data transfer between Tier 1 and Tier 2
sites. Dedicated Analysis Facility (AF) sites are responsible for storing AODs produced
in asynchronous processing on other Tiers and running organized analysis jobs with high
efficiency. The final AODs from MC are sent to AF and associated Tier 1 for archiving. All
processed CTF and AOD data are going to be removed from O2 and Tier 1 disks to prepare
space on resources for the following data taking period.
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Figure 2.8: ALICE computing model [3].

The LHC experiments have developed workflows and data management software to handle
the allocated WLCG resources. The ALICE experiment takes approximately 20% of the
total WLCG resources. Computing Resources Scrutiny Group (CRSG) [33] data on the Grid
resources allocated to ALICE in Run 2 are shown in Table 2.1. ALICE uses resources from 1
site on Tier 0, 8 sites on Tier 1, and 22 federation sites on Tier 2. The data storage resources
(disk and tape) are expressed in terabytes (TB), while the CPU is expressed in HEP-SPEC06,
a standard HEP benchmark [34]. HEP-SPEC06 (HS06) benchmark is used to evaluate the
CPU performance of WLCG sites tuned for the HEP domain but has also been adopted by
other communities. This reproducible benchmark adopted by WLCG in 2009 is based on the
industry-standardized Standard Performance Evaluation Corporation (SPEC) CPU2006 suite
to compute resources. CPU consumption is calculated in HEP-SPEC06 seconds (HS06s) for
all LHC experiments. The average CPU core power is 10 HS06. HS06 benchmark is going to
be replaced by a benchmark for heterogeneous resources (HPC and non-x86 resources) that
better correlates with today's LHC HEP workloads. Replacing HS06 with HepScore is being
considered. As seen from the table, a significant increase in used resources is present.

Data sizes for different data types expressed in kilobytes (kB) for collisions of p-p, p-Pb,
Pb-Pb, or Monte Carlo processing in Run 3 and Run 4 are shown in Table 2.2.
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Table 2.1: Types and quantities of resources delegated to ALICE in Run 2. Derived from
ALICE reports.

TIER RESOURCE 2015 2016 2017 2018

TIER 0

Disk 9400 13300 19300 28000

Tape 18400 25500 29700 41400

CPU 127000 218000 389000 541000

TIER 1

Disk 10100 17400 18245 27400

Tape 11300 18500 22300 35800

CPU 190000 253000 295000 340000

TIER 2
Disk 11500 14000 20060 25600

CPU 200000 255000 299000 311000

Table 2.2: Data sizes for data types produced in collisions (in kilobytes). Adapted from [3].

p-p p-Pb Pb-Pb

CTF 50 100 1600

ESD 7.5 15 240

AOD 5 10 160

MC 50 100 1600

MCAOD 15 30 480

Table 2.3 highlights the data of pledge resources on Tier 2 for 2022, the first year of the
Run 3 period, as this research considers processing on Tier 2.

ALICE Collaboration has developed systems and frameworks to manage and monitor the
distributed environment around the world needed to perform the ALICE physics program.
Each WLCG site member of the ALICE collaboration provides a machine dedicated to
running Virtual Organization (VO)-specific services called VoBox. MonALISA [35] [36] is
a monitoring system for ALICE distributed computing environment, including computing
facilities, storage systems, and data transfer applications, that collects and aggregates telemetry
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events and monitoring information in near real-time from distributed computing data centers.
Each VoBox has MonALISA services installed, which are used to gather monitoring data
from each running process, transfer, or service. MonALISA is an agent-based framework that
automates processes of generation Monte Carlo data generation to simulate the experiment’s
behavior or analyze the data by submitting the jobs in AliEn. Agents registered as dynamic
MonALISA services are running at sites around the world. Each site runs the MonALISA
services that collect data and information from the local AliEn services that provide Computing
Element (CE) or/and Storage Element (SE). The AliEn workload and data management
systems have been used for the distributed Monte Carlo event production, reconstruction,
and analysis. The AliEn production environment consists of several middleware tools and
services built around a central task queue. It makes use of the resources that have already
been deployed in the WLCG infrastructures and services. The AliEn job brokering model
based on pilot jobs enables flexible fair share distribution of jobs.

The AliEn job management services compose a three-layer lightweight system [25]:

• AliEn Central Services - for managing the whole system and distributing the workload

• AliEn Site Services - for managing the interfacing to local resources and Grid Services

• JobAgents - for operating on WNs and taking payload from the main Task Queue, a
central database of all submitted jobs.

Task Queue is scanned by the number of Job Optimisers, which split the jobs into subjobs
based on the location of the required input data or user-defined criteria. This optimization
has to ensure fair share and priority policies. The system then submits generic pilots to the
computing centers' batch gateways. Job is assigned only when the pilot wakes up on the
worker node. The job agents are started on the worker node to download and execute the
payload from the central Task Queue.

The site running AliEn services sends monitoring data regularly to the local MonALISA
service running on the site through the ApMon library [36], as shown in Figure 2.9 below.

Data from all the services, jobs, and nodes is aggregated and displayed in the MonALISA
GUI Client every few minutes. The aggregated data is collected for long-term histories.
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Figure 2.9: ALICE Grid monitoring [37].

It was necessary to adapt the AliEn data catalog to new requirements and improve its
horizontal scalability, ensuring the consistency of data reading and a high replication factor.
The jAliEn (Java ALICE Environment) middleware is developed for Run 3 to run more jobs.

The AliEn services layout is being reimplemented in Java as the new jAliEn frame-
work [38] expands the AliEn interaction model with the following:

• JCentral - central component taking care of the data management and job queue

• JSite - site service for connection multiplexing and caching running on trusted site
machines

• JBox - end-user (or job) service handling security matters, client-side authentication,
and upstream connection running on worker nodes.

AliEn's MySQL-based file catalog is replaced with jAliEn's in-memory NoSQL-based file
catalog designed to handle the growing processing load.
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2.5 ALICE physics productions

The physics production of the ALICE experiment can be divided into the online and offline
parts or raw and Monte Carlo data production, as shown in Figure 2.10. ALICE production
is implemented according to a predefined physics program that defines energy, luminosity,
number of events, and collision types.

Figure 2.10: The ALICE data production [39].

2.5.1 RAW data production

In the online part, raw data are generated as a result of the activity of the detector and the
collision of particles in it. Groups of sub-detectors (presented in Section 2.2) and other
complex computer systems (described in Section 2.3) participate in the raw production.
Different colliding systems, p-p, p-Pb, and Pb-Pb, are part of the ALICE physics program.
Among them, for ALICE, Pb-Pb collisions are of particular interest. In these collisions, an
enormous amount of particle multiplicity occurs.

ALICE raw production in Run 2 is shown in Figure 2.11. In the Figure 2.11, it can be
seen that the processing of collected data continued on the WLCG during the LS2 period.
Visualized data are extracted from the MonALISA framework [35].
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Figure 2.11: Raw data production in Run 2 (2015 – 2018) and processing steps during LS2
(2018 – until June 2021). Data derived from the MonALISA.

2.5.2 Monte Carlo data production

Numerous studies at ALICE rely heavily on Monte Carlo simulations [40]. The objective of
Monte Carlo simulations is to provide and predict the outcome and properties of the event after
collisions as accurately as possible. Monte Carlo simulations are crucial for performing data
analysis during which data are examined, cleaned, and transformed using highly specialized
tools and algorithms. Monte Carlo simulations are employed to simulate primary collision
and collision geometries ranging from central to peripheral collisions to estimate the detector
efficiencies, optimize detector design, and verify analysis performance. In their research,
physicists involved in the ALICE experiment compare experimental results with theoretical
forecasts. ALICE produces almost the same number of Monte Carlo events as the raw data.
The information included in Monte Carlo events can be used in physics analyses. The Monte
Carlo production workflow consists of several stages, as shown in Figure 2.10. The AliRoot
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framework supports Monte Carlo simulation at event generation, transport, digitization, and
event reconstruction.

Event generation is the first stage of Monte Carlo production. The type of particles and
their decays need to be defined to generate events of particular interest. The main event
generators used in production by ALICE are PYTHIA [41] (for p-p events), DPMJET [42],
and HIJING [43] (for Pb-Pb events). Event generators simulate particle collisions as seen by a
detector, with distributions predicted by theory to resemble real collisions. Generated particles
are described by the information needed for particle identification, particle type, particle
momentum, charge, mass, and vertex position. The particles produced by the generator
phase are then tracked through the ALICE experimental setup. This process is delegated to
the transport libraries such as Geant3 [44], Geant4 [45], and Fluka [46]. The output of the
transport phase are the hits produced in the detectors. Hits give precise details on a particle's
path through a detector, including its position and energy deposition. The summable digits
signal from the detector, which correlates to the raw data, is then created from these hits. The
phase of creating summable digits is followed by the digitization process, during which the
digits are produced and stored. Digits use real thresholds and contain information similar to
one obtained in real data taking.

The reconstruction chain of the experimental data and Monte Carlo samples is the same.
It consists of local reconstruction, followed by the primary vertex, then tracking, and finishes
with the secondary vertex. ALICE computing model envisages three reconstruction passes,
depending on the computing budget. The reconstruction uses the digits as input in a special
ROOT format or as raw data. During local reconstruction, each detector performs cluster-
ization. The single cluster consists of particle signals crossing the sensitive area detected
by neighboring detector elements. Then, the primary vertex is reconstructed using silicon
pixel detectors in the two ITS inner layers, and the track candidates, called seeds, are found.
To achieve precise primary vertex reconstruction, tracking for the ALICE central tracking
detectors is done using the Kalman Filter [47]. The track finding in the TPC starts at the
outer part, where the track density is minimal. Propagation of the state vector and the co-
variance matrix go towards the smaller TPC radii. Tracks prolongate to the ITS and then
outward direction to the outer radius of the TPC, followed by propagation to the TRD, TOF,
HMPID, EMCal, and PHOS, where they acquire the PID information. Finally, reconstructed
tracks are refitted backward to the primary vertex with the Kalman filter to obtain the track
parameters' values at or near the primary vertex. For the secondary vertex reconstruction, the
tracks that made it through the final refit toward the primary vertex are merged and utilized.
They are candidates for a secondary decay vertex if their closest approach distance is less
than a certain threshold and the closest approach point is placed before the initial measured
points on both tracks. Reconstructed tracks can be compared with the particles produced by
Monte Carlo simulation. Reconstruction output comes in the ESD format, which contains
all the information about the event or a list of reconstructed tracks/particles and global event
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properties. ESDs are further reduced to the AOD by applying some standard physics cuts
to remove unnecessary information for the physics analysis. Most of the physics analyses
are performed on the AODs. ALICE analysis framework reads each event only once, and
different algorithms can be applied to it according to the needs of the ALICE user.

The visualization of performed analysis of ALICE Monte Carlo production, mainly
running on Tier 2 sites during Run 2 and LS2, is shown in Figure 2.12.

Figure 2.12: Monte Carlo production during Run 2 (2015 – 2018) and LS2 (2018 – until June
2021). Data derived from the MonALISA.

Monte Carlo simulations are one of the most computationally demanding jobs. In Run 1
and Run 2, Monte Carlo simulation jobs were submitted as batch jobs to the AliEn system and
distributed for execution mainly on WLCG Tier 2 sites according to their resource availability.
The WLCG performs many tasks in parallel. Reconstruction tasks, Monte Carlo production
and data filtering follow an ordered schedule, while single-user Monte Carlo productions and
data analysis are unpredictable. The total number of running CPU hours per job type during
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RUN2 and LS2 can be seen in Figure 2.13. The Monte Carlo simulation job takes more than
60% of the total running CPU time on the WLCG.

Figure 2.13: Running time per ALICE jobs during Run 2 and LS2. Data derived from the
MonALISA.
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Table 2.3: Pledges provided by ALICE Tier 2 federations in 2022. Disk pledges are expressed
in terabytes and CPU pledges are expressed in HEP-SPEC06. Derived from ALICE data.

Federation Country Type Pledge Federation Country Type Pledge

AT-HEPHY-

VIENNA-UIBK
Austria

Disk 550
PL-POLISH-WLCG Poland

Disk 1900

CPU 4800 CPU 22000

CZ-PRAGUE-T2 Czechia
Disk 2200

RO-LCG Romania
Disk 10500

CPU 20000 CPU 39000

DE-GSI Germany
Disk 5200

RU-RDIG
Russian

Federation

Disk 3143

CPU 49700 CPU 33660

FR-GRIF France
Disk 2023

SE-SNIC-T2 Sweden
Disk /

CPU 21270 CPU 2820

FR-IN2P3-IPHC France
Disk 480 SK-TIER2-

FEDERATION
Slovakia

Disk 1200

CPU 7000 CPU 7800

FR-IN2P3-LPC France
Disk 419

T2-LATINAMERICA
Latin

America

Disk 600

CPU 7000 CPU 16300

FR-IN2P3-LPSC France
Disk /

T2_UNAM Mexico
Disk 500

CPU 3972 CPU 4900

FR-IN2P3-

SUBATECH
France

Disk 2500 UA-TIER2-

FEDERATION
Ukraine

Disk 200

CPU 13500 CPU 3000

HU-HGCC-T2 Hungary
Disk 1290

UK-SOUTHGRID
United

Kingdom

Disk 1010

CPU 12570 CPU 10619

IN-DAE-

KOLKATA-TIER2
India

Disk 3000
US-LBNL-ALICE

United

States

Disk 8400

CPU 50000 CPU 82000

IT-INFN-T2 Italy
Disk 8820

ZA-CHPC-T2
South

Africa

Disk 1250

CPU 92700 CPU 12000
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3 BACKGROUND AND LITERATURE REVIEW

This chapter deals with current trends and essential aspects of processing in the Cloud.
Challenges in this area are directing the modeling of a heterogeneous Cloud infrastructure
platform adaptable to HEP data requirements for an operationally efficient geo-dispersed
heterogeneous system. This chapter identifies the fundamental concepts, components, and
methods for simulating ALICE Monte Carlo data production on a heterogeneous Cloud. Then,
the Cloud computing simulators are analyzed, and the most convenient Cloud simulator for
this research is explored. The literature review and conclusions on scheduling strategies for
achieving scalability in the heterogeneous Cloud are provided.

3.1 Heterogeneous Cloud computing

The distributed computing paradigms have marked computer science and enabled the success-
ful conduct of scientific research and the work of a large organization. Within the research
of this thesis, an analysis of the development of distributed computing paradigms was con-
ducted [48], as shown in Figure 3.1. These distributed computing paradigms are: Cluster
computing, Grid computing, Cloud computing, Fog computing, and Dew computing. The
physical infrastructure of distributed computing paradigms is based on a distributed com-
puting model that involves storing data in various networked locations, distributed database
systems, and various analytical tools and applications. The physical infrastructure must meet
the criteria of scalability, openness, transparency, and QoS. Large scientific experiments have
organized and used their resources as one of the computing paradigms. An example is CERN
which uses computer and network resources through the WLCG.

Cloud computing has revolutionized computer science with optimal and flexible use of
the pool of configurable computing Infrastructure as a Service (IaaS), Platform as a Service
(PaaS), or Software as a Service (SaaS) over the Internet. Cloud computing is based on
virtualized IT infrastructure pooled and divided regardless of the limits of physical hardware
using special software to realize maximum utilization and cost savings of the data center
resources. The United States National Institute of Standards and Technology (NIST) defines
Cloud computing [49] as:

"...a model for enabling ubiquitous, convenient, on-demand network access to a shared
pool of configurable computing resources (e.g., networks, servers, storage, applications,
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and services) that can be rapidly provisioned and released with minimal management effort
or service provider interaction. This Cloud model comprises five essential characteristics,
three service models, and four deployment models." Cloud deployment models are public,
private, hybrid, and community Cloud. Essential Cloud services characteristics provisioned
by virtualization and automation enablers and described by NIST are:

• on-demand self-service

• broad network access

• resource pooling

• rapid elasticity

• measured service.

Cloud services have significantly evolved from the NIST definition of Cloud computing.
In addition to the core services defined by NIST, IaaS, SaaS, and PaaS, a wide range of
services is getting developed. For marketing purposes, services add the suffix "as a Service
(aaS)" and are collectively named Everything as a Service (XaaS) [50]. In addition, Cloud
computing serves as a platform for developing and collaborating with new paradigms such
as Fog, Edge, and Dew computing that play an important role in IoT and the realization of
fifth-generation mobile networks and services [51] [52] [53].

Figure 3.1: Distributed computing paradigms timeline [48].
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Cloud computing has been a ubiquitous and accepted choice for data storage and pro-
cessing. Cloud is a cost-effective platform for highly scalable database searches, distributed
storage, and processing over the Internet. The shift towards using the potential and flexibility
of Cloud computing to process large amounts of data in different disciplines is increasing and
tends to increase further. Cloud computing and modern techniques such as artificial intelli-
gence, machine learning, and HPC platforms are integral elements of digital transformation
and infrastructure modernization projects. The use of Cloud services for workload migration,
data analytics, and improving data center efficiency is continuing to expand as a result of
digital transformation. The Cloud services market is also growing, dominated by Amazon
Web Services, Microsoft, Salesforce, Google, and Oracle. Current research and statistics [54]
show the growth and rapid progress of Cloud technologies.

As technology advances, the traditional Cloud environment based on homogeneous
infrastructure now evolves into the modern heterogeneous Cloud data centers [54] [55] [56].
Heterogeneity is a broad concept. The heterogeneity concept is manifested in the diversity of
resources, whether it is hardware platforms produced by various manufacturers or different
servers having different processing, memory, storage, and networking capacities. The term
"heterogeneity" in this context refers to the variance in the computing power, storage capacity,
and networking capabilities of various servers. The study [57] shows that with the rapid
growth of Big Data, the need to exploit the potential of HPC is growing. Therefore, HPC
platforms are moving to Cloud-based architectures [58]. The efficient exploitation of the
heterogeneous Cloud infrastructure has become a topic of great importance in recent years.
The availability of heterogeneous Clouds makes possible the deployment of a wide range of
multiple specific applications and workloads, both data and compute-intensive. As a result,
more and more applications and services are moving to the Cloud [58] [59].

These heterogeneous features and diversity support a wide range of applications but have
challenges related to the complexity of managing such an environment. Clouds based on
heterogeneous computing infrastructures may have specific requirements on the network.
Combining several interconnected topological architectures can simultaneously ensure scala-
bility and high performance. The complexity introduced by heterogeneous Clouds cannot
be solved with conventional approaches to resource management. That requires a combina-
tion of multiple service abstraction modes to do appropriate mapping between application
requirements and the resource characteristics done at both the hardware and software levels.
Improving performance while preserving cost-effectiveness can be achieved through scaling.
This research is focused on the execution of ALICE simulation jobs and the processing
of scientific data in heterogeneous cloud data centers. A proper task scheduling algorithm
should improve performance and ensure scalability when processing ALICE simulation jobs
in heterogeneous data centers in the Cloud.
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3.2 Scalability

Scalability is the primary focus of system design and a core concern in large-scale computing.
Over the past decades, there have been several attempts to define scalability uniformly. The
etymology of "scalability" derives from the Latin word scala, scalae, meaning stairs or ladder.
This Latinism is accustomed in all European languages. In computing, it means variable
in size, the ability to significantly and relatively effortlessly increase or decrease capacity
according to a change in requirements. Scalability issues are related to resource demands and
managerial issues.

Scalable use of resources is a complex process that should enable the optimal use of all
available resources. Resources should be allocated where and when needed, with decision-
making based on data. Data volume puts scalability at the center of Big Data processing and
storage. As a multidimensional problem, it requires the development of models, structures,
and technological solutions. Scalability relates to other system qualities, like throughput,
latency, efficiency, and cost, that have to be optimized simultaneously. Adaptability to
dynamic changes is one of the main factors in the design of distributed systems and parallel
algorithms. Scalability testing is used to evaluate scientific computing environments and
technologies developed to handle Big Data. Therefore, it is necessary to further investigate
and consider the correlation of scalability with other factors in the field of Big Data and to
improve and optimize the scalability property in new modern technologies. Hill [60] analyzed
scalability as an attribute for describing multiprocessor systems and making decisions about
design architecture. He concluded that there was no generally accepted definition and that
scalability as a term should be used with caution.

In [61], an attempt was made to identify attributes important for designing a scalable
system. Structural scalability, load scalability, space scalability, and space-time scalability
are considered interdependent general types of scalability. Therefore, these aspects should be
distinguished to recognize whether they limit growth or affect performance.

Then, the research project on scalability [62] agreed that there was no uniform definition
for a scalable real-world system. The authors started with the definition of scalability as the
ability to handle an increased workload. They studied two aspects of scalability, the aspects
of hardware use and software use, all without adding resources to a system and by repeatedly
applying a cost-effective strategy for extending a system's capacity. The authors analyzed
the causes of scalability failure related to the resource limits, such as network bandwidth or
memory. Achieving scalability is inseparable from attributes like performance, usability, or
cost. The scalability audit concept comprises potential resource bottlenecks, incorrect scaling
assumptions, general scaling strategies, and scalability assurance methods. These factors are
to be applied to evaluate whether the system's architectural design is scalable. The relationship
between the maximum demand that the system can meet (D) and the cost-effectiveness (K)
of an idealized and more realistic scalable system is shown in Figure 3.2. An idealized
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scalable system that is entirely cost-effective is extreme. A system that gradually improves
cost-effectiveness as demand grows is more realistic. The region where the system is highly
scalable is its "sweet spot."

Figure 3.2: System demand vs. cost-effectiveness of the idealized and more realistic scalable
system [62].

Scalability testing is an essential phase of system or service development. It is required to
collect and measure relevant scalability performance metrics and interpret metrics influence
to test scalability and achieve better performance for increasing workload demands.

The majority of the scalability metric proposals for homogeneous systems are based on
two scalability metrics: isospeed and isoefficiency. These metrics are derived from Amdahl's
law tied to efficiency and speedup.

Isospeed [63] depends on the number of processors needed to keep the efficiency constant
while increasing the problem size. The isospeed scalability metric defines an algorithm-
machine combination as scalable if the achieved average unit speed remains constant with
increasing numbers of processors, provided the problem size is increased proportionally. The

isospeed scalability function is defined as ψ(N,N′) =
N′W
NW ′ where N and N′ are the initial

and scaled number of employed processors, respectively, W and W′ are the initial and scaled
problem size (work), respectively. The isoefficiency scalability function expresses the system's
ability to keep the parallel efficiency constant when the system and problem size increase [64].
Highly scalable systems have small isoefficiency function. The parallel efficiency (E) is

limited by speedup (S) and the number of processors used (p), E =
S
p

. The speedup of a

parallel system is defined as the ratio of sequential execution time and parallel execution
time of an algorithm. Sun et al. [65] proposed an isospeed-efficiency metric to measure
the scalability of the general computing environment, both homogenous and heterogeneous
computing systems. Isospeed-efficiency combines the isospeed and isoefficiency through
a concept called "marked speed" to describe the computing power for a single computing
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node and a computing system as a constant for a study derived from the benchmarked
speed of the nodes. Scalability Testing and Analysis System - STAS [66] implements an
isospeed-efficiency scalability metric to provide the system's scalability analysis through
four components: system characterization, algorithm pre-analysis, scalability tester, and
scalability analyzer. It can describe the scalability of algorithms and systems and evaluate
their performance.

Cloud-based applications must satisfy three non-functional requirements: scalability,
elasticity, and efficiency [67]. In [68], the authors define scalability, elasticity, and efficiency.
Workload and resources are the concepts most used in literature to define scalability. Cloud
performance metrics in terms of scalability, elasticity, and efficiency are reviewed. Scalability
should be distinguished from elasticity [69] [70]. Scalability and elasticity are significant
non-functional Cloud properties. Scalability is the system's ability to support workload by
increasing or decreasing available resources over a period of time, while elasticity is the
system property manifested as a dynamical adaptation by provisioning and de-provisioning
resources to changing workload demands at each point in time. According to [71] and [72],
scalability is a prerequisite for elasticity. Weber et al. [72] highlight the difference between
the definitions of scalability and elasticity. They state that scalability is a prerequisite for
elasticity and that high elasticity implies appropriate resource allocation and usage. Varying
load intensity is the input variable to which a Cloud system is subjected when analyzing
scalability. Service level objectives and the number of provisioned resources are used to
evaluate the system's adaptability to varying load intensity. Inspired by elasticity measures,
authors in [70] introduced two technical scalability metrics that address the volume of software
instances and quality scaling performance regarding average response time. The proposed
metrics were tested to assess Cloud-based software systems' scalability depending on demand
scenarios. Metrics are quantitatively expressed as a ratio between actual and ideal values.
Figure 3.3 shows the main concepts used to measure elasticity (resource demand/supply and
under/over-provisioning). Steady increase and stepped increase are demand patterns used to
test and achieve scalability [70], as shown in Figure 3.4.

Real-world Cloud-based systems are unlikely to exhibit ideal scalability. More realistic
scenarios of Cloud systems are the step-wise and varied-wise gradual change of resources
[70]. Analyzing the scalability of a heterogeneous Cloud system requires an analysis of system
design characteristics, workload characteristics, and a clear definition of scalability metrics
for heterogeneous systems. The scalability of a system is achievable through horizontal or
vertical scaling. Horizontal scaling or scaling out means adding more nodes or machines to
the system to increase performance rather than increasing resources such as CPU, network,
and storage by scaling vertically.

Most of the analyzed scientific papers use workload, bandwidth, latency, resource alloca-
tion (CPU, memory, disk), time, robustness, speed, reliability, availability, efficiency, energy
use, and price as parameters for evaluation and defining scalability [68] [72] [73] [74] [75] [76].
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Figure 3.3: Elasticity metrics [71].

Figure 3.4: Scalability demand patterns [70].
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The Cloud scalability measure is driven by QoS and productivity, with which it is directly
proportional [77]. Productivity is also directly related to the problem size.

A framework [78] analyses the scalability of a software system as a multi-criteria opti-
mization problem, and scalability is defined as "a quality of software systems characterized by
the causal impact that scaling aspects of the system environment and design have on certain
measured system qualities as these aspects are varied over expected operational ranges."
Therefore, scalable factors and dependent variables influencing the system's scalability must
be identified, as well as objectives and metrics for unique scalability questions.

Introducing software-defined technology in data centers opens scalability challenges on
both control and data planes [79] [80]. Scalability is a crucial property in the SDN control
plane characterized by the throughput and flow setup latency [81]. An overview of SDN
scalability challenges and approaches for achieving higher performance at the control plane
in different environments such as data centers, enterprise networks, campus networks, Cloud
networks, and WAN is given in [81].

Achieving scalability between several networked data center locations in the Cloud de-
pends heavily on applied resource management and scheduling approaches. The management
of resources is based on different scheduling algorithms and metaheuristics for controlling
the use of shared resources and achieving effective use of all sites' capabilities when placing
tasks on processing. Resource provisioning and resource monitoring as scalable resource
management components should consider and analyze aspects of heterogeneity, speed, and
volume of the generated data over time.

3.3 Cloud system simulators

Modeling and simulation are approaches used in research and engineering to assess, study,
and improve Cloud environments. These tools are considered essential for reproducing or
verifying forecasts and analyzing complex systems and various processes. Management of
VMs and job allocation in heterogeneous data centers in the Cloud represents a significant
problem that requires extensive usage of modeling and simulation. Today's computers and
algorithms allow complex simulations of different systems and simulations of real-world
and natural phenomena. Simulation techniques enable researching solutions for resource
allocation problems and allow building large realistic models of organized systems without
using a production system. Simulation as a research method has been used extensively for
researching Cloud environments, resource utilization, allocation policies, energy consumption,
cost performance, and other aspects related to Cloud data centers. System performance can
be evaluated concerning different parameters such as total time, cost, or network distance.

Several Cloud simulation frameworks have been developed to examine Cloud environment
behavior. These simulators have been built on different platforms focusing on various features.
Simulators relevant to this research area have been studied. It is often required to adjust a
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simulator for application to a specific research model. The characteristics of the simulators
are presented in Table 3.1.

CloudSim [85] and OMNeT++ [92] are the platform bases for various research related to
Cloud computing. These discrete event simulators have been adapted to different research
needs.

After analyzing the Cloud simulation frameworks, the Discrete-Event Simulator CloudSim
was selected. CloudSim is a frequently used Java-based simulator suitable for research studies
related to Cloud computing. This simulator enables modeling Cloud infrastructure, including
policies for provisioning VMs to hosts, scheduling jobs and machines, modeling costs, and
managing on-demand resource provisioning. CloudSim supports real application traces usage,
containing tasks called cloudlets to compute the application's resource utilization. Another
reason for choosing the CloudSim simulator is the option of simulating a heterogeneous
Cloud computing environment. CloudSim allows the simulation of different Cloud IaaS usage
scenarios. This Cloud simulator is flexible enough to encompass common specificities of the
hardware architecture through creating data centers, setting the data center characteristics,
creating data center brokers, and creating VMs with different configurations for processing
cloudlet workload. The CloudSim entities for modeling Cloud infrastructure and policies are
shown in Figure 3.5.

Figure 3.5: CloudSim architecture [85].
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3.4 Management and scheduling algorithms

The performance, reliability, and cost of Cloud systems are impacted by resource man-
agement. Effective Cloud resource management includes complex policies for optimizing
resource provisioning and resource scheduling that can be further categorized on several
techniques [93]. A detailed survey on Cloud resource management was carried out in [94].
Resource management problems belong to the class NP-hard [95]. Thus, innovative, efficient,
and adaptable solutions are required to organize sharing of geo-distributed Cloud resources
among multiple users with different requirements. Scalability, horizontal as well as vertical,
is affected by resource management policies. These policies can be categorized into several
classes: admission control, capacity allocation, load balancing, energy optimization, and QoS
guarantees. Mechanisms to implement these policies are control theory, machine learning,
utility-based, and market-oriented mechanisms [96].

Numerous load balancing strategies were analyzed, with special emphasis on task schedul-
ing. Different factors should be considered, from the heterogeneity of hardware and software
systems to workflow requirements.

Various heuristic, metaheuristic, and hybrid algorithms [97] are implemented to solve
task scheduling problems. Task scheduling is a process of selecting the site or Cloud for
placing and running tasks and mapping the submitted tasks to available virtual resources
based on task properties. Scheduling algorithms can be categorized as static and dynamic,
offline and online, and preemptive and non-preemptive scheduling algorithms [93]. Static
scheduling algorithms need information in advance and do not meet the needs of fluctuating
Cloud computing workloads. Cloud resource management requires dynamic algorithms
to optimize in real-time and adapt decisions to the current requirements and state of the
resources. Offline or batch processing does not require user intervention, and resource-
intensive jobs organized in batches are usually allocated on resources to run when the system
is less loaded. Preemptive task scheduling can remove a running task from the allocated
resource and assign it to another Cloud resource. Non-preemptive scheduling does not
interrupt the running task on the allocated resource until the task is finished. Workflow and
task scheduling algorithms are classified according to the Cloud environment, VM type, data
set and application type, execution time, cost, and power [98]. Certain prescribed objective
functions must be satisfied by task scheduling when processing tasks on different Cloud sites,
like minimizing the makespan and total completion time while achieving load balancing at
each site and consequently improving scalability and efficiency. There are many stochastic
optimization approaches to this problem coping with variables whose values vary with time.

Inspiration for solutions to problems from the discrete or continuous domain can be
found in natural, evolutionary, biological, physical, or social systems. The most common
task scheduling implementations are based on: First Come, First Served (FCFS), Round-
Robin (RR), Shortest Job First (SJF), Minimum Execution Time (MET), Max-Min, Min-Min,
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Heterogeneous Earliest Finish Time (HEFT), Earliest Deadline First (EDF), Tabu Search
(TS), Genetic Algorithm (GA), and Particle Swarm Optimization (PSO). Many proposed
algorithms are based on and compared with these reference algorithms.

Dynamic algorithmic techniques from the Artificial Intelligence (AI) field are being
introduced in Cloud task scheduling. AI algorithms are viewed as capable of adapting to
the system's actual behavior to meet some specified goals in Cloud environments. The
most common AI task scheduling implementations are based on algorithms belonging to the
fields of Swarm Intelligence and Evolutionary Algorithms. The social behavior of biological
systems is modeled in swarm-based optimization algorithms. Social interactions in a randomly
initialized swarm play an important role in updating the current position of each individual.
Such systems are characterized by the individual's constant search for a better position to
adapt to the environment. The foundation of Evolutionary Algorithms is natural evolution.
Through generations of a randomly initialized population, Evolutionary Algorithms apply
evolutionary operators, including selection, crossover, and mutation, to find an ideal solution.
The Particle Swarm Optimisation, Ant Colony, Tabu Search, Harmony Search, and Bee Colony
algorithms belong to the group of Swarm Intelligence algorithms. Genetic Programming,
Genetic Algorithm, Evolutionary Programming, and Evolution Strategies are well-known
algorithms from the group of Evolutionary Algorithms.

Among analyzed metaheuristics, the Evolution Strategies algorithm is chosen for im-
plementation on task scheduling in the heterogeneous Cloud computing environment. The
Evolution Strategies approach has not been applied to the resource and task scheduling
domain problems. It is flexible and adaptable to the requirements of modern large-scale
Cloud environments under different loads as an intelligent resource management optimization
strategy. The concepts of evolution and natural selection served as the foundation for the
self-adaptable Evolution Strategies algorithm. This algorithm employs random mutation,
recombination, and selection depending on the fitness function value. During the iterative
process, these processes are applied to a population of individuals with potential solutions
to generate better solutions. Chapter 5 explains the fundamental ideas behind the Evolution
Strategies algorithm.

3.5 Literature review

This section examines pertinent research on heterogeneous Cloud computing, as well as
resource management and scheduling techniques. The thorough analysis of the relevant
literature reveals that there is no systematic classification or survey on the issue of task
scheduling in heterogeneous Cloud computing.

The survey on Cloud resource management and its components presented related def-
initions and classification taxonomy in the field [94]. Addressing dynamic heterogeneous
environments with data-intensive workflows was the focus of the analysis. Identified are gaps
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and future challenges to be addressed by research and development. The gaps are identified
in addressing the data-intensive loads, hybrid and multi-Cloud scenarios concerning resource
heterogeneity and distribution, rescheduling and performance fluctuations, and reliability.

A job scheduling policy based on the stochastic Tabu Search algorithm was proposed and
examined in [99] to solve the resource allocation and task scheduling problem in Grid/Cloud
networks. A hybrid job scheduling approach merged Tabu and Harmony Search algo-
rithms [100] and achieved satisfactory results in terms of makespan and cost.

Algorithms that simulate natural processes will have importance as intelligent optimization
and resource management methods, primarily in AI and reinforcement learning.

Task scheduling approaches based on an adapted PSO algorithm were proposed in several
studies to better balance local and global search. Modified PSO (M-PSO) [101] used a
nonlinear function for the inertia weight to facilitate search and reduced energy consumption
required to accomplish a given workload by mapping all tasks to the system's computing
resources. The authors in [102] proposed an adaptive inertia weight strategy for Cloud-based
task scheduling to better balance local and global search. The hybrid task scheduling strategy
based on the PSO technique and fuzzy theory was proposed to minimize makespan and
maximize resource utilization [103]. It used a fuzzy system for fitness calculations with
input factors and later applied four modified velocity updating methods to explore search
space. More existing PSO-based scheduling schemes in a Cloud computing environment were
analyzed and classified in [104]. The PSO-based task scheduling algorithm was integrated
with the Ant Colony algorithm [105]. The experiment carried out in a laboratory environment
showed improvements in fitness, cost, and running time when comparing results with PSO
and Ant Colony algorithms. The Ant Colony algorithm is a population-based metaheuristic
inspired by the foraging behavior of ants and their pheromone communication to find a
path between their colony and source of food. The enhanced Ant Colony task optimization
algorithm was used to balance the VM load and utilization rate [106]. The function for
searching for the optimal task scheduling solution combined three objectives minimum
waiting time, resource load balancing degree, and task completion cost. The load weight
coefficient of VMs was introduced in the update process of the local pheromone. Moon et
al. proposed the slave ants-based ant colony optimization - SACO for allocating tasks to
VMs and enhancing the performance of the task scheduler in the Cloud [107]. The proposed
algorithm was focused on solving the global optimization problem with slave ants by avoiding
long paths whose pheromones are wrongly accumulated by the leading ant. Diversification
and reinforcement strategies were applied to slave ants. This algorithm does not consider
resource heterogeneity and the type of computing instances.

An in-depth literature review showed that the Genetic Algorithm metaheuristic is a
dominant optimization algorithm and the most common Evolutionary Algorithm in the Cloud
scheduling domain. Duan et al. [108] proposed an Adaptive Incremental Genetic Algorithm
(AIGA) and modeled task scheduling as an objective optimization problem. The algorithm

40



used the different mutation and crossover rates to achieve minimum makespan and progressed
in some measured parameters compared to other relevant algorithms. Multiobjective Balancer
Genetic Algorithm (BGA) [109] optimization analyzed makespan and average resource
utilization ratio for tasks arriving in batches. It used the balancer to balance the workload
among VMs. The fitness function combined the makespan and load balancing. The BGA
algorithm is evaluated based on makespan and average resource utilization ratio metrics. A
hybrid Genetic Algorithm, the Modified Genetic Algorithm combined with Greedy Strategy
(MGGS) [110], aimed to improve makespan and load balancing considering the expected
total time for the VM to execute all assigned tasks as the fitness criteria in a fewer number
of iterations. The performance of the MGGS algorithm was compared with several existing
algorithms based on the total completion time, average response time, and QoS parameters.

The existing research on software-defined approaches in the Cloud based on hetero-
geneous resources is analyzed. Intelligent adaptive algorithms play a key role in Cloud
environments that use software-defined procedures for central, configurable, and dynamic
software management and optimization of the use of remote hardware resources related to
network, storage, and CPU for different computer architectures. Concerning the network
as a core system resource, Software-Defined Networking (SDN) is a widely adopted agile
approach for dynamic environments that require continuous adaptation to achieve greater
efficiency. SDN provisions and manages network traffic and balances load automatically.
These SDN functions are significant in Cloud data center environments. SDN's main feature
is the separation of control and forwarding functions from the infrastructure level. Control-
level software services facilitate programmable, automated, centralized, and remote network
infrastructure management that enables the introduction of new technologies, features, and
additional network elements. Energy efficiency, security, virtualization, and performance
(network throughput, latency, availability, and QoS) were highlighted as common challenges
for large-scale Cloud data centers in the study on employing a software-defined approach
for Cloud computing [111]. According to the given taxonomy, this research aims to improve
performance in heterogeneously configured inter-Cloud data center architecture focusing
on joint optimization of resources for batch processing. An adaptive Genetic Algorithm
strategy was applied to SDN-based Cloud data centers [112] for resource allocation and VM
placement. Energy, VMs, and intra-data center communication costs were considered for
optimization. Related taxonomy and challenges in performance optimization, usability, and
viability of metrics, resources, infrastructure, and software were highlighted in a survey on
HPC Cloud [58]. It is highlighted that HPC Cloud will become indispensable for supporting
research efforts in Big Data and AI. Proper resource allocation algorithms and resource virtu-
alization technologies in the hybrid Cloud environment can balance resource requirements
and improve the expected QoS cost-effective model.

The conducted survey shows that the number of research and approaches in centralized
Cloud resource management and task scheduling in geographically distributed heterogeneous
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data centers is quite limited. The simulation was the dominant approach for evaluating the
system performances of the models proposed in the surveyed papers. The number of tasks
in the workload in existing research was also considered. The most used were workloads
of several hundred tasks. I intended to increase the number of tasks significantly. For this
reason, a workload of several tens of thousands of tasks was created. A limited number of
reviewed approaches considered load balancing, which is significant for VM-task allocation
when dealing with the heterogeneity of tasks and resources. Most of the existing resource
management and task scheduling models are evaluated using a smaller number of metrics that
are not enough to prove the scalability of these approaches. To increase scalability in Cloud
systems, further improvements in resource management could still be made.

A literature survey has shown that the Evolution Strategies approach has the ability to
optimize resource utilization, but it has not yet been used in resource and task scheduling.
Moreover, several studies and projects are tackling the challenges of HEP data processing
in the Cloud. The most notable ones are the CERNBox [113], BigPanDA [114], and Helix
Nebula [115].

Several other projects have been launched to address this problem by providing commer-
cial Clouds and HPC to fill the demands for computing resources in the field.

CERNBox [113] is the Cloud storage system dedicated to CERN users and is based on
the EOS, a highly distributed disk system. CERNBox servers are placed in the CERN Data
Center. CERNBox enables storing, accessing, and sharing data and files stored in the CERN
EOS infrastructure from any web browser.

The ATLAS experiment has significantly used Cloud computing services during Run 2 and
continues improving them. The BigPanDA (Big Production and Data Analysis) project [114]
extends the previously used data-intensive workload management system to exa-scalable
Cloud computing platforms. The BigPanDA introduces new types of computing resources
into ATLAS computing infrastructure for processing during periods of high system load. In
addition to expanding the system beyond the computer web, the goal is to achieve the system
application outside HEP.

Helix Nebula's strategic initiative [115] for European scientific Cloud computing set
the priorities for the widespread adoption and availability of Cloud services across different
scientific domains. The initiative has documented an Information-as-a-Service business model
through which fast implementation, adoption, scaling, and competition are applied. These
steps tend to provide a roadmap for scientific data lifecycle management. The scientific
Cloud called Helix Nebula Science Cloud (HNSciCloud) is a hybrid platform that supports
the deployment of Cloud services, HPC, and Big Data capabilities. Jobs from the ATLAS
and CMS experiments were used as a use case to test the applicability of Cloud computing to
LHC computing [116]. Tests have shown that the Cloud is an appropriate infrastructure for
simulation workloads previously executed on the WLCG.

In [117], four CMS workflows of different complexity were analyzed on the dynamic
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resources of Fermilab HEPCloud. The results showed the successful use of dynamically
projected resources for highly scalable CMS workflows. In addition, they showed that the
cost of commercial Clouds for the experiment scale is higher but comparable to the cost of
on-site resources.

The HPC resources were integrated with the HTC CERN data center infrastructure [118].
Tools used for CERN's internal Cloud were managing the HPC cluster. Experiences in
applying Cloud computing technologies in the HPC environment are described, along with
job scheduling and resource usage performance challenges.

Furthermore, an HPC cluster was integrated with one center of the ATLAS experiment at
the Tier 2/Tier 3 level using the virtualization technique [119]. The aim was to achieve an
efficient and scalable environment. Different configurations and performance tests have been
conducted to evaluate results.

Researchers from Karlsruhe Institute of Technology have developed TARDIS [120], a
resource manager for dynamic integration and usage optimization of diverse resources (Grid
sites, HPC centers, Cloud providers) by focusing on the requirements of individual HEP
workflows. As a result, a specialized software environment can be provided on all the
opportunistic resources integrated into one overlay batch system using the DRONE concept
for transparently and dynamically providing resources. Allocation, utilization, demand, and
supply are the metrics used in the decision process of providing the resources to fit the demand.
However, network limitations and CPU inefficiency are present in the case of I/O intensive
jobs since the jobs run on integrated resources and read the files from remote Grid sites due to
the lack of permanent HEP storage.
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4 MODEL FOR PROCESSING IN THE CLOUD

This research aims to improve performance within a heterogeneously configured Cloud
architecture of geographically distributed data centers by optimizing resource usage for
batch processing. An adjustable and scalable simulation environment is required to assess
the resource management and task allocation approaches within a Cloud while avoiding
challenges and costs incurred in a physical Cloud environment.

4.1 ALICE data preparation from processing on Tier 2

Applications from the science and business domains benefit from the scalability and perfor-
mance of Cloud services. Workflows from these domains consist of multiple computational
tasks that have to be scheduled and evaluated on parallel systems in the required time. Work-
flows are based on independent tasks (Bag of Tasks) or tasks with dependencies (Directed
Acyclic Graphs). Tasks in a workflow can be processed as transactions or batches and can have
stringent requirements on CPU, storage, or memory. The significant challenges for efficient
resource management in Cloud for scientific research containing heterogeneous resources are
good resource utilization and task scheduling. These challenges could be addressed through
the task execution on resources appropriate to the task requirements but with constant resource
usage monitoring.

During the research, the existing workloads from resource-intensive scientific applications
were analyzed. Significant emphasis was on workloads that simulate real-world activities in
HEP. The LHC experiments at CERN create large collections of data measurable in petabytes
(PB). The amount of HEP data is being created and growing at high speed. Multiple copies
of data are distributed and stored in WLCG's numerous data centers. Raw data processing,
simulation, reconstruction, and analysis processes are executed on WLCG resources.

The workload has to be open-source and should allow modeling on a selected CloudSim
simulator for reproducible evaluation of the heterogeneous multi-site Cloud model and the
applied method detailed in Chapter 5. Workload serves as input data to simulate intra-Cloud
behavior focusing on task allocation and joint optimization of resources for batch processing
between geographically distributed data centers. CloudSim supports workloads in Standard
Workflow Format (SWF) [121]. SWF format is easy to parse and uses integer data type in
standard units. Independent jobs in the ASCII log are represented as a single line. Jobs are
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described by the 18 characteristics shown in Figure 4.1.

Figure 4.1: Job characteristics in the SWF file. Derived from the [121].

Several real-life workload logs were collected from the supercomputers in production
and converted into SWF format. An example is the LHC Computing Grid (LCG) workload
log from the parallel workload archive [122]. The log provided by the e-Science Group of
HEP at Imperial College London contains jobs of 11 days of activity in 2005 from multiple
nodes and has 188041 jobs. The jobs were collected from the LCG testbed. The exponentially
distributed jobs required one CPU to process a certain amount of data.

Apart from the capacity and complexity of simulated resources, the number of jobs in
the used workload affects the scalability of the system. Most researchers in the field have
based their research on a smaller number of tasks and resources of lower capacity than is the
objective of this research, especially in the Big Data era. A significant increase in the amount
of data and their complexity is expected compared to previous data taking periods. Therefore,
I have created a workload to simulate batch processing of ALICE Monte Carlo production
jobs on Tier 2. The workload is in CSV (comma-separated values) format, compliant with job
fields defined by SWF requirements. I studied the resource needs of the ALICE experiment
before and after the significant modification in the experiment settings. That served as a
motivation to develop a scientific workload with computationally demanding tasks associated
with the ALICE Monte Carlo simulation. All Monte Carlo production jobs are submitted to
the central ALICE GRID task queue. After the user submits the job called the master job,
AliEn separates the master job into the different subtasks specified as subjobs. Subjobs are
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then submitted to Tier 2 site resources. The Monte Carlo jobs are CPU-intensive, with a small
set of input data, and without large Tier 2 output data storage requirements.

The synthetic workload is created by utilizing the Monte Carlo log data about jobs
executed on more than WLCG 60 locations taken in February 2022. It consists of 49026
batch subjobs (tasks) of one proton-lead (p-Pb) Monte Carlo production master job. The data
have been extracted from the ALICE grid monitoring system. Certain properties are adapted
to SWF format using most of the data from the Monte Carlo data logs. The subjobs are
submitted dynamically for concurrent processing. In Run 1 and Run 2, ALICE subjobs were
assigned to a VM configured in advance for processing with 1 CPU core and 2 GB of RAM
per core. ALICE processing in Run 3 and Run 4 will be based on timeframes requiring larger
memory and multicore processing. Execution will move from 1-core to 8-core to achieve
high CPU efficiency. Hence, the ALICE Monte Carlo subjobs in the workload are modeled
to require either 1 or 8 cores. In the simulation framework, subjobs are represented as tasks
(cloudlets). Tasks have varying times of execution and use different amounts of resources.
The execution length of the cloudlet varies from 2340 to 60780 (in Million Instructions).

Created workload follows the stepped increase and decrease demand pattern shown in
Figure 4.2.

Figure 4.2: Demand pattern of created workload.

VM placement strategy is needed to assure greater accessibility and usability of incorpo-
rated HPC and Cloud infrastructure based on multicore VMs used for testing multicore task
processing.
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4.2 Conceptual modeling of heterogeneous multi-site Cloud
architecture

This section describes the infrastructure of a heterogeneous Cloud environment, its instances,
and its requirements. The distributed heterogeneous Cloud system is modeled to represent
its key configuration characteristics. Conceptual modeling is an important task to be carried
out before developing computer code in the simulation modeling phase. The real-world
system to be modeled needs to be understood to determine the content of the simulation
model and objectively model the system's purpose. The foundation of conceptual modeling
is the abstraction of the real system based on its description. Simpler conceptual models
are preferred over complex ones since they are more adaptable during simulation research.
Simple models are easier to validate, more flexible, and faster to develop and execute. They
require less data and the obtained results are easier to interpret [123].

I will provide examples of Cloud systems of different capacities and infrastructure scales
that share similar features and resource management challenges with the system simulated in
this research.

INFN Cloud infrastructure [124] supports scientific research based on services built on
state-of-the-art, open-source, vendor-neutral architecture for computing and data. The core
backbone connects the large data centers and several federated sites of the INFN multi-site
Cloud infrastructure. WLCG experiments have access to INFN infrastructure that also serves
the research needs in other scientific domains.

OVH [125] is the largest European provider of Cloud services and has 17 data centers in
France and 32 data centers in the world. The given structure of OVH will be the backbone of
the future Cloud project of the European Union named Gaia-X [126].

Google Cloud [127] is one of the largest providers of Cloud computing services and
infrastructure. Google Cloud operates data centers on five continents, currently in 34 indepen-
dent geographic areas, to meet users' latency, availability, and durability requirements. The
users can choose from a wide range of products and APIs available from Google computing,
storage, analytics, and networking. The concept is developed according to the model and
needs of such distributed heterogeneous Cloud systems.

The HR-ZOO [5] goal is to build a computing and data Cloud that will serve as a basis for
the national research and innovation e-infrastructure. Five interconnected data centers located
in four cities in the same area form the HR-ZOO Cloud:

• Zagreb - HR-ZOO ZG1 (DC 1)
- HR-ZOO ZG2 (DC 2)

• Osijek - HR-ZOO OS (DC 3)

• Rijeka - HR-ZOO RI (DC 4)

• Split - HR-ZOO ST (DC 5)
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Solving advanced problems from different research domains is based on parallel pro-
cessing on high performance clusters that generate and consume increasing amounts of data.
HPC or supercomputers are becoming ubiquitous and will have increasing applications in
many fields. They can process a large amount of data in an extremely short time and are
necessary for contributing to scientific and social challenges. There are numerous initiatives
and plans for investments in the development of supercomputer infrastructure, which is crucial
for competitiveness and independence in the data economy. In the last updated list from
June 2022 of the Top500 [128] most powerful world supercomputers, 118 supercomputers
are located in Europe, with 2 of them in the top 10 of the list. HPC applications focus on
large computational loads, while Big Data Analytics (BDA) applications are demanding in
terms of storage. These paradigms result in very different sets of key requirements with
constraints on timing and precision, availability, software, service-level performance, memory,
storage, communication, and scheduling. Cloud facilitates the dynamical access to large-scale
resources (storage, compute, network) requested by these applications. Convergence of HPC,
BDA, and Cloud results in new data processing paradigms and leads to challenges related to
the extreme scale of data management.

Heterogeneity is a factor that can affect resource management at the architecture, configu-
ration, or load level. HR-ZOO provides resources for High Performance Computing (HPC),
High Throughput Computing (HTC), High Scalability Computing (HSC), and resources for
storing large data collections provided by the Cloud, as shown in Figure 4.3. The HR-ZOO
HPC system will have a performance of around 1 PFLOPS. The supercomputing infrastruc-
ture is going to be used for the specific needs of science and higher education, industry,
and the public sector. The University Computing Center of the University of Zagreb (Srce)
will manage the national center. The HR-ZOO multi-site Cloud infrastructure of data and
computer centers could contribute to data processing for the production of LHC experiments
at WLCG Tier 2. The data centers are interconnected with high bandwidth capacity links of
100 Gbit/s. HR-ZOO infrastructure will be linked to the European research and educational
community via the GEANT network.

According to the HR-ZOO documentation, data centers have general purposes x86 archi-
tecture and Linux OS. Heterogeneous data centers consist of hosts with differently configured
instances of VMs. The system has three groups of hosts. These are hosts with processor
resources, hosts with high memory capacity, and hosts with HPC processors. The world's
highest-performing server CPU for general-purpose computing and providing great perfor-
mance in solving scientific and compute-intensive problems [129] is used to simulate HPC
hosts with performance expressed in tera floating-point operations per second (TFLOPS).
These HPC hosts are designed with an adjusted number of 64-core processors with a processor
base clock of 2.45 GHz.

Additional heterogeneity is introduced at the level of VMs. The system is configured with
a total of 2100 VMs distributed to data centers of different resource capacities.
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Figure 4.3: HR-ZOO global system description. Derived from the HR-ZOO data.

VMs are comprised of varied CPU, memory, storage, and network capacities and are used
with a space-shared policy. There are three main different-sized VM instance types. The
third type of VMs is modeled after the features of the latest generation of general-purpose
Amazon EC2 m5a.2xlarge instances [130]. Resource utilization can be improved by scaling
the number of available VMs. Time-shared provisioning policy is used for allocating tasks
to VMs' cores, enabling dynamic context switching. Figure 4.4 illustrates used provisioning
policies on two CPU cores hosting two VMs and each VM hosting four tasks.

Figure 4.4: Used provisioning policies - space-shared for VMs and time-shared for
tasks [85].
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Created workload serves as an input to the model. The one data center (DC 2) governs the
distributed heterogeneous resources through the central broker. Based on task specifications,
the central broker manages the distribution of tasks on the VMs and enforces a scheduling
policy to select a data center to run the submitted tasks. The central broker acts as a task
scheduler and manager that determines the host, performs the selection, schedules, and
implements computations during the simulation on the appropriate resources.

4.3 Simulation modeling of heterogeneous multi-site Cloud
architecture

A simulation study is an analysis and design technique used in research and management to
evaluate and estimate the characteristics of the models that represent diverse and complex
real-world systems. Analyzing simulated system models, it can be concluded that the most
simulated models are stochastic, dynamic, and discrete. Experimenting with the actual system
often requires vast computing resources. Simulation is done before implementation to gain
knowledge of input variables or modifications in the system environment and their effect
on a system’s performance improvement. This section describes the simulation model of
the distributed heterogeneous Cloud system based on the conceptual model in more detail.
The Cloud infrastructure model based on the settings of the HR-ZOO is simulated in the
CloudSim software framework version 4.0 integrated with the Eclipse environment. CloudSim
provides many features needed to simulate a Cloud system. It has a layered architecture for
implementing allocation and scheduling algorithms. CloudSim has fundamental entity classes
for modeling data centers, hosts, VMs, brokers, and application services (cloudlets) [85].
Different provisioning policies for allocating cloudlets to VM and VMs to hosts can be
applied in a large-scale simulation environment to meet task cloudlet requirements or VM
deployment requirements. The characteristics of different VM instance types are shown
in Table 4.1. The simulation environment consists of data centers modeled as in Table 4.2.
Millions of Instructions Per Second (MIPS) characterize the processing power, while the total
size capacity for storage and memory is specified in MB. Cloud entities can communicate
through a message passing mechanism. Simulation implies the process of creating and
maintaining data center characteristics, determining the central broker, creating and setting
the configuration of VMs, and the process of creating a workload with tasks that are sent to
the central broker and executed on VMs.

The Cloudlet and DatacenterBroker classes are noteworthy. The Cloudlet class contains
attributes that describe the execution of tasks. These properties are also important for execution
monitoring. Cloudlets are mapped for execution on a specific VM according to the proposed
algorithm. The DatacenterBroker class receives a list of cloudlets for its execution on defined
VMs. Tasks are read from the created workload in CSV format using a specialized function.
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Output performance measures are observed and gathered during and after the simulation run.
The number of cloudlets in the experiments varied from 1000 to 20000. Each experiment was
repeated 10 times. After implementing the metaheuristic algorithm for task scheduling in
a simulated heterogeneous Cloud computing environment, the mean values of the obtained
results have been analyzed and will be presented in Chapter 5.

Table 4.1: Capacity of heterogeneous VM instance types.

VM INSTANCE TYPES 1 2 3

CPU CORES 2 4 8

CPU [MIPS] 1000-1500 1000-1500 2000-2350

RAM [GB] 8 8 35

STORAGE [GB] 10 10 10

BANDWIDTH [Gbps] 1 1 1

DATA CENTER DC 1, DC 2, DC 3/4/5 DC 1, DC 2 DC 2

Table 4.2: Hardware capacity of data centers.

Data center DC 1 DC 2 DC 3/4/5

Paradigms HSC HPC, HSC, HTC HSC, HTC

Number of hosts 15 40 5

Number of CPU cores 960 62333 1628

CPU [MIPS] 2900 2200/2450/2900 2200/2900

Total RAM [GB] 10000 171389 8000

Total storage 300000 7068200 78800
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4.4 Metrics for evaluating the processing model in the Cloud

Evaluation of task scheduling and resource allocation in large-scale systems is challenging
for data centers' administrators and users since scale and cost are unpredictable. Cloud system
modeling and simulation require consistent metrics with a high level of accuracy to assess
performance. Scalability is affected by the following metrics: makespan, average resource
utilization, throughput, average execution time, degree of imbalance, and the number of VM
instances over time. These metrics are used in this research to demonstrate the effectiveness
of the proposed metaheuristics and the scalability of the simulation model.

• Makespan is the commonly used performance metric [131] for efficient scheduling
concerning the time required for the concurrent execution of submitted tasks on assigned
VMs. The optimization goal is to minimize the makespan. Makespan is a metric that
indicates the maximum time required to execute assigned tasks on each VM:

ETV Mi =
m

∑
j=1

ETi(task j), where i ∈ VMs (4.1)

MS = Max(ETV M1, . . . ,ETV Mn) (4.2)

MS – makespan
ET – maximum execution time
j – task
i – VM

• Throughput is an important metric to consider when analyzing scalability and CPU
efficiency. Throughput describes the operating rate as the number of tasks processed
per second [132]. The optimization goal is to achieve the highest possible throughput.

T =
Ntasks

MS
(4.3)

T – throughput
Ntasks – number of tasks
MS – makespan

• Average Resource Utilization is an important quantitative metric that depicts the effec-
tiveness of resource usage in the Cloud system. Optimizing the average utilization of
resources results in load balancing in Cloud data centers. Average Resource Utilization
is calculated using the following equation [131] [133]:

RUavg =
∑

n
i=1 ETV Mi

MS×n
(4.4)
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RUavg – average resource utilization
MS – total makespan
ET – total execution time of VM resources that process tasks
n – number of VM resources

• Average Execution Time is the time elapsed in the execution of the task on the VM as
a Cloud resource. The goal is to minimize this performance metric which is calculated
by the following equation [133]:

ETavg =
∑

m
j=1 ET (task j)

m
(4.5)

ETavg – average execution time
ET – execution time of task
j – task
m – the number of tasks

• Degree of Imbalance indicates the load balancing performance between virtual re-
sources in different data centers. The degree of imbalance is based on execution times
on all VMs and is calculated using the equation below [134]:

DI =
Tmax −Tmin

Tavg
(4.6)

DI – degree of imbalance
Tmax – maximum execution time
Tmin – minimum execution time
Tavg – average execution time

• Number of VM instances over time - observing proportional growth and reduction of
capacity under system load changes to match the costs of operating the system with
traffic. The number of active VM instances per individual data center (scale-in) and
across data centers (scale-out) is observed in intervals.

The primary goals of the task scheduling strategy in the considered Cloud environment
are to achieve a reduced makespan, better throughput, increased average resource utilization,
shortened average execution time, a smaller degree of imbalance, and scalability of allocated
VMs. The proposed metaheuristic strategy for task scheduling and load balancing will be
evaluated in the context of these metrics under different loads and described in Chapter 5.
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5 EVOLUTION STRATEGIES-BASED MODEL
OPTIMIZATION

The migration of resource-intensive applications to the Cloud requires new approaches to solve
existing limitations. These approaches have to be dynamic, adaptive, and often automated.
One of the solutions to address mentioned challenges and objectives is to use software-based
concepts when designing and using Cloud infrastructure.

This chapter presents a strategy for better optimized task scheduling based on the meta-
heuristic Evolution Strategies algorithm. Task scheduling is performed across heterogeneous
VMs hosted on Cloud data centers for scientific research. This chapter is derived from a
paper entitled "Scalable Management of Heterogeneous Cloud Resources Based on Evolu-
tion Strategies Algorithm," published by the gold open access journal IEEE Access in June
2022 [135].

5.1 Software management concept

Cloud relies on virtualized resources and its key advantages are dynamic scalability and high
availability of services. Adding or removing capacity is easy as demands evolve and grow
over time. Efficient resource management must be employed in Cloud data centers to fulfill
QoS requirements related to resources shared by various tenants and applications. Cloud
deployment is based on software and a good network connection.

Software-based system management has to improve the usage and adjust the capacity
and performance of distributed storage, computing, and networking platforms. An essential
feature of the software-defined architecture is separating the core control layer from the
infrastructure layer. The control layer provides software services for dynamic, monitored, and
program-driven management of the underlying heterogeneous computing, networking, and
storage components. There is a trend to base physical infrastructure on industry-standard x86
architecture and open-source hardware. Every data center component can be centrally man-
aged, and functions can be automated through intelligent software. With the software-defined
approach, the time to provision new resources can be reduced, infrastructure performance can
be improved, managing virtualized resources can be flexible, and the system can be easily
adapted to dynamically changing workloads.

The dynamically adaptive intelligent algorithms applied via the software-based controller
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have the potential to improve the efficiency of Cloud task scheduling and the control system's
scalability. These intelligent algorithms belong to branches of evolving Computational Intelli-
gence computing paradigm, a sub-field of AI. Neural Networks, Fuzzy Systems, Evolutionary
Computation, Swarm Intelligence, and Artificial Immune Systems are branches of the Com-
putational Intelligence paradigm [136]. These models follow the intelligence and behavior
of natural systems, from biological and evolutional to social optimization processes, and are
adaptable to new conditions.

Figure 5.1: Classification of intelligence algorithms.

The group of Evolutionary Computation algorithms has a significant application in this
research domain. Genetic Algorithms, Genetic Programming, Evolution Strategies, and
Evolutionary Programming are the most known Evolutionary Computation algorithms. Evo-
lutionary processes, such as natural selection, reproduction, recombination, mutation, and
survival of the fittest, are the elements used to improve the ability of an individual to survive
in dynamically changing and competitive environments. Solving computer-based problems
using Evolutionary Computation paradigms implies applying these elements.

The Evolutionary Strategies metaheuristic has often been applied to solve real problems in
all fields of activity in today's world. However, an extensive review showed that the Evolution
Strategies algorithm did not have its application in managing Cloud resources. Its properties
and potential for adaptation to the needs of modern systems and various loads were key for
selecting the Evolution Strategies algorithm in this research.
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5.2 Evolution Strategies algorithm

The Evolution Strategies (ES) algorithm is a global optimization search algorithm developed
by Rechenberg and Schwefel [137]. This metaheuristic is a population-based technique
that mimics the biological evolution optimization process and adaptive behavior of living
organisms. It is based on the concepts of natural evolution, which through mutation, natural
selection, and reproduction, generates the individuals that survive the evolution process. In
other words, suitable candidates concerning the objective function of the chosen domain
are selected. The Evolution Strategies algorithm applies the self-adaptation of mutation
parameters, which is not a principle used by other evolutionary algorithms. Evolution
Strategies algorithms employ the self-adaptation principle provisioned through a software
approach. Self-adaptive systems apply operators and conditions to modify the system behavior
during runtime. These models seize the knowledge about the system that is necessary to
perform adaptation actions in meeting set goals.

The basic form of the Evolution Strategies algorithm is a two-membered (1+1)-Evolution
Strategy with one parent and one descendant per generation. Multi-membered (µ, λ)-Evolution
Strategy (comma strategy) and (µ+λ)-Evolution Strategy (plus strategy) schemes were in-
troduced for black-box optimization in more complex settings. The population in multi-
membered strategies consists of µ parents and λ offspring, where λ ≥ µ. What distinguishes
the two multi-membered schemes employing stochastic and deterministic operators is the
selection process determining the next generation. In the case of a (µ, λ)-Evolution Strategies,
the next generation is formed of the µ best individuals selected from λ offspring, while in the
case of a (µ+λ)-Evolution Strategies, the next generation is formed of the µ best individuals
selected from parents and offspring (µ+λ) individuals. Application of the (µ, λ) scheme of
the Evolution Strategies algorithm in complex, dynamic problem spaces prevails over (µ+λ)
as it removes outdated solutions from the next generation, leaves local optima, and tracks
moving optima in a changing environment. The implementation steps of the (µ, λ)-Evolution
Strategies task scheduling model are described in the following text.

5.2.1 (µ, λ)-Evolution Strategies algorithm

The methodology implemented in CloudSim uses (µ, λ)-Evolution Strategies metaheuristic
to dynamically allocate tasks to resources needed to process them. The Evolution Strategies
algorithm is applied as a non-preemptive scheduling algorithm. The optimal solution is
pursued through an iterative process, where each generation represents an iteration step.

The selection of suitable VMs from a given set of all created machines for each task and
execution order on the assigned VMs are based on the task properties, VM characteristics,
and the capacities of the physical infrastructure.

In Evolution Strategies, each element from the population is a potential solution to
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the problem being solved. The parent population of µ individuals evolves to λ offspring
individuals, where the condition for the (µ, λ) strategy is λ > µ. The next generation of
potential solutions is generated using the mutation operator that modifies the randomly
selected parent from the previous generation. A mutation operator is applied to explore new
possible solutions and introduce a variation to the population. From the observed λ offspring
candidates, the µ of the individuals are selected for the next generation. Fitness values guide
the parallel search of the large search space in a reasonable computation time and are used to
evaluate the individuals as potential solutions. Offspring individuals are compared by fitness
value and survive only one generation. Additionally, the Hall of Fame strategy is added
to hold the optimal solution in the pool of the best individuals from each generation. The
stopping criterion of the iterative process is predefined, and that criterion is a fixed number of
generations.

Implemented are the following steps of the (µ, λ)-Evolution Strategies-based approach:

1. Initialization of the population

The initial population of individuals is randomly generated. An individual is of the
size of the workload. The individual is represented by pairs of tasks, called cloudlets,
and assigned VM. Population individual is randomly initialized vector containing n
parameters X = (x1, x2, x3,. . . , xn), where xi= (cloudlet, VM), xi ∈ X . Figure 5.2 shows
an example of the initial population.

Figure 5.2: Example of the initial population.

2. Evaluation of population

The fitness function evaluates individuals in the population. The fitness function
determines the real-valued candidate solution, the fittest in the struggle for a limited
amount of existing resources. It helps in metrics optimization. As the task scheduling
on heterogeneous resources is a multi-objective optimization problem, the applied
fitness function considers the processing speed and RAM capacity of VMs, and the
length of cloudlets and RAM used by cloudlets. It is defined as:
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FitnessFunction =
CloudletLength

V MProcessingSpeed
+

CloudletRAM
V MCapacityRAM

The individual with a lower fitness value is given more preference and is considered
fitter.

3. Selection

The selection operator simulates the principle of natural selection that allows some
offspring individuals to survive and others not. In (µ, λ)-Evolution Strategies based
approach, µ individuals at the end of each generation are selected for creating λ offspring
individuals using mutation operator. Previous studies [138] [139], my preliminary
studies, and conducted tests with different combinations of parameters in the search
for the Evolution Strategies algorithm parameters confirmed that the parent-offspring

ratio of
1
7

provides the best selective pressure in the systematic process of searching for
optimal solutions.

4. Mutation

A mutation is an essential and fundamental part of the evolution process. In nature,
mutations happen randomly. Here, the random resetting mutation operator has been
used to create λ offspring as new candidate scheduling solutions. VMs from the set
of machines present at the parent are assigned randomly to cloudlets. The mutation
operator randomly chooses 10% of the individual population unit and changes the
previously assigned VM with the ones present in the parent. Among that, the VM at the
selected position is replaced with a randomly selected VM from the list of all created
VMs to maintain the diversity in the population, as shown in Figure 5.3.

Self-adaptation is employed to control and adapt the mutation distribution algorithmi-
cally. The mutation strategy also applies the Gaussian distribution function. Gaussian
distribution evaluates the values with mean value and standard deviation. The Gaussian

distribution function is calculated as f(x)=
1

σ
√

2π
e
−(x−µ)2

2σ2 , where µ is the mean calcu-

lated as µ =
Σx
N

, σ =

√
∑(x−µ)2

N
is the standard deviation of the Gaussian distribution,

N is the number of observations, and x is the value in the distribution.

VM change is conditioned with the random value from obtained Gaussian distribution
based on MIPS values present in the parent VMs. If the set condition is met, the
randomly assigned VM remains in the cloudlet-VM pair. Otherwise, a new VM
meeting the condition is assigned to the cloudlet.
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Figure 5.3: Performing mutation on offspring individuals.

The resulting offspring generated through mutation represents a new task allocation
solution. The mutation is being applied across generations iteratively.

5. Hall of Fame

The Hall of Fame feature is applied to the Evolution Strategies algorithm to preserve
the most optimal candidate solution from each generation. The Hall of Fame principle
enables saving the fittest individual from each population in the pool. Here, the
implemented Evolution Strategies algorithm selects next-generation parent with uniform
probability from child individuals. At the end of the process of finding the best solution,
the fittest solution is selected among the best individuals from the Hall of Fame. Every
cloudlet is assigned to the chosen VM.

The list of cloudlet-VM pairs is submitted to a central broker for managing cloudlet
execution dynamically based on cloudlet submission time.

Pseudocode of implemented (µ, λ)-Evolution Strategies algorithm is shown in Fig-
ure 5.4.
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Figure 5.4: Pseudocode of the proposed (µ, λ)-Evolution Strategies algorithm [135].

5.2.2 Longest Job First data center broker policy

The execution length of tasks is known in advance from their description. After the Evolution
Strategies task scheduling procedure is executed, the list of tasks (cloudlets) with assigned
VMs is submitted to the central broker. Tasks are distributed to assigned VMs bound to
different data centers. For the optimization process of load balancing and management of the
resource usage for the processing of compute-intensive tasks, the Longest Job First broker
policy is added to the Evolution Strategies algorithm. The goal is to choose and process longer
and more complex tasks first. The Longest Job First broker policy allowed sorting tasks in
descending order of their pre-assigned instruction length and enabled their submission to VMs
specified by the Evolution Strategies procedure. Memory and CPU resources are primarily
assigned to tasks having a greater length. Evolution Strategies scheduling algorithm with
Longest Job First load balancing policy is used in non-preemptive mode.

The steps of the algorithm for achieving better system utilization for increased system
loads based on the Evolution Strategies algorithm for task allocation with the implemented
Longest Job First broker policy are shown as a flowchart in Figure 5.5.
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Figure 5.5: Applied task allocation approach based on (µ, λ)-Evolution Strategies algorithm
with Longest Job First broker policy.

5.2.3 Shortest Job First data center broker policy

The Evolution Strategies with Shortest Job First scheduling algorithm is applied to batch-type
processing of computationally intensive tasks. The Evolution Strategies algorithm puts tasks
into a queue according to their arrival time. With the addition of the fast-scheduling Shortest
Job First algorithm, the tasks with the shortest execution time are given priority to be executed
first.

The Evolution Strategies approach with Shortest Job First can minimize the waiting time
for the execution. With the Evolution Strategies with Shortest Job First, the waiting time for
the longer tasks is shorter than the waiting time for shorter tasks in the case of Evolution
Strategies with Longest Job First.

The flowchart of the Evolution Strategies with Shortest Job First algorithm is given in
Figure 5.6.
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Figure 5.6: Applied task allocation approach based on (µ, λ)-Evolution Strategies algorithm
with Shortest Job First broker policy.

5.3 Experimental evaluation

This section presents the results of the experimental implementation of algorithms based on
the principles of (µ, λ)-Evolution Strategies metaheuristics. Three principles are used and
discussed for task scheduling and balancing in a heterogeneous Cloud environment. These
are the Evolution Strategies (ES), Evolution Strategies with Longest Job First (ES - LJF),
and Evolution Strategies with Shortest Job First (ES - SJF) principles. Experimental results
of selected metrics obtained by Evolution Strategies, Evolution Strategies with Longest Job
First, and Evolution Strategies with Shortest Job First simulation are compared with results of
the same metrics obtained by Genetic Algorithm simulation.

Observed performance evaluation metrics in simulation studies that have been considered
for improvement are:

• Makespan

• Average Resource Utilization

• Throughput

• Average Execution Time

• Degree of Imbalance

• Load distribution analysis

• Scalability analysis.
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The optimization goals of adaptive metaheuristics are to minimize the makespan, maxi-
mize resource utilization, increase throughput, reduce average execution time and imbalance,
and execute all tasks assigned to a heterogeneous Cloud environment with respect to VMs.
An important goal is to achieve scalability of resource usage. An increase in complexity is
achieved by testing the performance for different loads. Simulation tests employ different
numbers of tasks (1000, 2000, 5000, 10000, 15000, and 20000 tasks) from the data set de-
scribed in Chapter 4. Each metaheuristic algorithm is evaluated 10 times. Average results are
analyzed. The Evolution Strategies algorithm considers the task characteristics and matches
task characteristics to the most appropriate VM instance. The validation is performed for each
algorithm and the resulting plots are shown in the following figures.

The graph in Figure 5.7 shows the makespan values of the algorithms. The goal is
to reduce makespan as that suggests better performance. The graph reveals a significant
reduction of makespan, a time difference between the start and finish times of the task list,
when applying Evolutionary Strategies-based algorithms compared to the Genetic Algorithm.
The Evolution Strategies with Shortest Job First approach outperforms other policies and
shows the lowest makespan value. The resource usage values show the anticipated increase in
the overall makespan as the workload ratio increases.

Figure 5.7: Makespan.

Resource utilization is a key performance indicator of optimal management across complex
Cloud infrastructure intended for supporting scientific research. Figure 5.8 reveals that the
value of resource utilization increases with the increase in the number of tasks. Evolution
Strategies-based scheduling algorithms have a higher resource utilization rate. Evolution
Strategies with Shortest Job First approach tends to outperform other approaches in utilizing
available resources. It is assumed that the processed tasks would be just a part of the planning
workload running in the data centers. Thus, the resource utilization rate shown in the graph
corresponds to the application resource utilization.
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Figure 5.8: Average Resource Utilization.

Throughput is a vital metric for assessing the productivity of task processing which conse-
quently affects QoS. Throughput is an important factor for analyzing scalability properties
under different loads. The results of all compared policies are shown in Figure 5.9. The results
show that the Evolution Strategies approaches, especially the Evolution Strategies-Shortest
Job First approach, improved throughput in all test scenarios. The applied algorithm results in
increased throughput as more tasks are processed in less time and consequently has a greater
average resource utilization.

Figure 5.9: Throughput.

The task is a single execution unit. The task scheduling algorithms aim to reduce the
total execution time on the remote compute nodes in non-preemptive mode. Tasks are
executed simultaneously on VM resources decided by the scheduler. Figure 5.10 shows the
measurement results, which demonstrate no significant difference in the average cloudlet
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execution time between the Genetic Algorithm and the Evolutionary Strategies approaches.
This performance characteristic is related to data from the workload. In the case of Evolution
Strategies - Longest Job First, the results are slightly higher owing to the waiting time for the
allocated VM resource.

Figure 5.10: Average Execution Time.

Proposed algorithms reduce the degree of imbalance, as presented in Figure 5.11. Dynamic
Cloud load balancing is based on a software approach. Task distribution is done on five highly
scalable data centers according to their capacities. The dynamic process of task distribution is
shown in Figure 5.12, Figure 5.13, and Figure 5.14. The DC 1 and DC 2 receive the most
tasks for processing. Tasks are distributed based on RAM and CPU requirements. For most
test cases, Evolution Strategies with Longest Job First is more efficient in attaining the desired
lower degree of imbalance. This metaheuristic prioritizes the longest tasks without affecting
the number and choice of VMs to be used.

Figure 5.11: Degree of Imbalance.
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Figure 5.12: Load Distribution for (µ, λ)-Evolution Strategies task scheduling.

Figure 5.13: Load Distribution for (µ, λ)-Evolution Strategies task scheduling with Longest
Job First broker policy.
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Figure 5.14: Load Distribution for (µ, λ)-Evolution Strategies task scheduling with Shortest
Job First broker policy.
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Simulated infrastructure can easily handle the tasks with the features observed here. As
a result, all submitted tasks are successfully processed. The system scales vertically and
horizontally for the changed volume of tasks. Evolution Strategies approaches dynamically
balance task allocation to Cloud resources and exhibit similar scalability performance, as seen
in Figure 5.15, Figure 5.16, and Figure 5.17. These software-based task allocation policies
realized through a central broker achieve dynamic provisioning and periodic scaling of VM
instances.

Table 5.1 highlights and shows the number of active VM instances over time in the case
of a workload with 1000 tasks and the case of a workload with 10000 tasks. Applied task
scheduling algorithms based on the Evolution Strategies metaheuristic tend to scale at the
VM level. Scalability is analyzed from the aspect of the number of VMs required over time.
Applied scheduling policies effectively scale resources on-demand in response to workload
changes and with respect to the predefined metrics. As a result, the number of virtual resources
grows and reduces over time and tracks the progress of tasks during the time for various
workloads.

Figure 5.15: Scalability of (µ, λ)-Evolution Strategies metaheuristic algorithm for task
scheduling.
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Figure 5.16: Scalability of (µ, λ)-Evolution Strategies metaheuristic algorithm with Longest
Job First principle for task scheduling.

Figure 5.17: Scalability of (µ, λ)-Evolution Strategies metaheuristic algorithm with Shortest
Job First principle for task scheduling.

69



Table 5.1: Number of active VM instances over time for 1000 and 10000 tasks.

hhhhhhhhhhhhhhhhhhTime [s]
Number of tasks 1000 10000

ES ES - LJF ES - SJF ES ES - LJF ES - SJF

0 0 0 0 0 0 0

25 1 1 1 9 10 9

200 14 15 16 104 104 106

1000 59 56 59 469 469 468

4000 112 117 120 744 759 749

6000 102 103 101 751 750 754

8000 110 108 108 773 773 760

10000 49 49 50 456 459 454

12000 79 78 73 605 615 606

14000 71 71 69 400 393 397

20000 178 178 177 718 717 709

30000 69 71 72 244 249 248

40000 0 0 0 0 0 0

70



5.4 Discussion

The proposed metaheuristic approach to solve the optimization problem in the Cloud environ-
ment is based on natural selection. In the simulation experiment, I tested the three Evolution
Strategies-based algorithms against a Genetic Algorithm. A simulated Cloud system is
characterized by heterogeneity. A metaheuristic for the dynamical allocation of resources
needed to process tasks has to find a near-optimal solution in a reasonable computation time.
Resource-intensive Monte Carlo tasks are the main focus of the experiments. These tasks are
CPU and RAM-bound and long-running.

The optimization goals of adaptive metaheuristics have been achieved. The results ob-
tained using Evolutionary Strategies-based approaches are better compared with results
obtained using the Genetic Algorithm under the same conditions. The Evolutionary Strategies-
based approaches achieved a smaller makespan, higher resource utilization, increased through-
put, similar average execution time, and reduced resource utilization imbalances. In the
Evolution Strategies with Longest Job First algorithm, the waiting time is higher as longer
tasks have execution priority. Meanwhile, tasks with smaller instruction lengths are waiting
for free resources. The Evolution Strategies with Shortest Job First algorithm minimizes the
makespan, increases throughput, and efficiently uses VM resources in most cases. It can be
deduced from an analysis of resource usage that the data center load and the number of VM
instances dynamically follow the number of tasks to be executed.

The Evolution Strategies metaheuristic enables an orchestrated and adaptive task schedul-
ing. The distribution of tasks in the workload affects the overall performance of task schedul-
ing algorithms. By analyzing the size distribution of tasks in the workload, it can be concluded
that the characteristics and number of tasks, along with the type of VMs, affect the success
of the task scheduling algorithms and their differences for specific metrics. Considering the
observed evaluation metrics, Evolution Strategies with Longest Job First performed better for
fewer tasks in the workload than Evolution Strategies and Evolution Strategies with Shortest
Job First. Also, in the case of a larger number of tasks in the workload, it is evident that
the performance is better for the proposed Evolution Strategies with the Shortest Job First
algorithm. It happens due to the workload containing a greater proportion of longer tasks.

The evaluation of the performance data presented in this study leads to the conclusion
that task scheduling based on the Evolution Strategies metaheuristic exhibits scalability
characteristics. Thus, the data support the premise that the choice of task scheduling algorithm
is of great importance for achieving scalability in a Cloud system based on heterogeneous
resources. The demand pattern and fluctuations in created workload are met. As a result, load
balance and scalability of using system resources are ensured.
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6 SUMMARY AND OUTLOOK

This chapter concludes the presented study and highlights the key contributions. It also
discusses and indicates opportunities for future research in this area, planned as a continuation
of work on this topic.

6.1 Summary and conclusions

This thesis presented the study of scalability and processing data on the scientific Cloud moti-
vated by observation from various perspectives, reviewing relevant literature, and experience
working on a CERN. The research is conducted in the context of the ALICE experiment and
processing its Monte Carlo data at the Tier 2 level. These topics are becoming more relevant
because of the rising volume of generated data, growing requirements for reliable and fast pro-
cessing, and rapid technology development leading to the heterogeneity of system resources.
The conducted research was preceded by an analysis of the scientific research published so far
in this area. In general, there is a clear constant growing interest in the Cloud infrastructure,
and a massive application of this technology is to be expected. Numerous organizations in a
wide range of research activities want to make use of the efficiency and flexibility that Cloud
computing provides to improve their productivity. It is essential to choose the best adapted
models and specific solutions for following larger workloads with a higher efficiency level
when scaling the used heterogeneous infrastructure and different available technologies in
the Cloud. Cloud computing enables the advanced automation and application of intelligent
algorithms in processing collected data. Some of the research contributions are the overview
and analysis of Cloud simulators as well as the overview and analysis of the concept of
scalability in the thematic research domain. Scalability is a fundamental concern for a multi-
site Cloud system. I have investigated how scalability is affected by resource management
approaches and, in particular, by task scheduling algorithms. The newly proposed model
enables central software management of heterogeneous Cloud infrastructure distributed in
five data centers aimed at scalable resource usage. For this research, after a detailed analysis
of the algorithms, the metaheuristic algorithm Evolution Strategies from the Computational
Intelligence group was selected, which has not been used so far for dynamically assigning
tasks to the resources of such a system. Besides Evolution strategies, Evolution Strategies with
Longest Job First approach and Evolution Strategies with Shortest Job First approach were
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developed to optimize the scheduling of Monte Carlo jobs. The Evolution Strategies algorithm
uses the information it has about all available virtual resources and tries to allocate tasks with
different resource demands to those VMs that best meet those demands. For the evaluation of
task-VM pairs, the algorithm uses the proposed fitness function and selects the best solution
that will result in optimal values of the monitored metrics. These metrics affect the scalable
use of resources, both vertically and horizontally, depending on the number of incoming tasks
arriving in the system to maintain a constant task processing time and the efficiency of the
services provided by the Cloud. For the evaluation of the proposed model, it was necessary to
prepare an appropriate workload for the simulation. As the emphasis was on computationally
intensive tasks of the Monte Carlo production of the ALICE experiment, such a workload has
been created and adapted to work in the selected Cloud simulator. I have created a workload
in SWF format with data from ALICE p-Pb production job. The proposed methodology has
been compared with the commonly used Genetic Algorithm. The obtained results confirmed
a correlation between analyzed variables and scalability. From the analysis of the research
findings, it emerges that the Evolution Strategies-based approaches achieved greater overall
processing effectiveness and resource utilization and maintained a relatively constant task
processing time while increasing the throughput in proportion to the increase in incoming
task processing requests. Among Evolution Strategies-based approaches, Evolution Strategies
with implemented broker policies stand out in achieving set goals. Finally, research results
confirm that applying the proposed model based on the Evolution Strategies metaheuristic
makes it possible to improve resource usage and achieve scalability of the heterogeneous
multi-site Cloud system and satisfy the identified requirements, thus achieving the main
planned contributions of the thesis.

Scientific contributions to this topic are woven and realized in papers published in scientific
and international peer-reviewed publications:
Journal paper

• Scalable Management of Heterogeneous Cloud Resources Based on Evolution Strate-
gies Algorithm

Conference papers

• Modeling and Simulation of Heterogeneous Resources in the Cloud: (Work in Progress)

• Software-Defined Storage Optimization of Distributed ALICE Resources

• Data-Intensive Computing Paradigms for Big Data

Poster

• Big Data Storage in High Energy Physics
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6.2 Outlook

During the work on this thesis, several aspects that I would like to explore comprehensively
were identified. Resource management in distributed paradigms is a contemporary problem.
There is a growing trend of requests for the use of Cloud infrastructure, on which other
emerging distributed paradigms also rely. Software-defined management is an aspect to be
further considered in future research work in the context of data and resource sharing within
multiple distributed environments. It is challenging to make a scalable architectural solution,
consolidate the data centers, and control the load. Therefore, the controllers should gather all
resource information and exchange relevant information.

Evolution Strategies has shown efficiency in achieving scalability in a distributed environ-
ment. It is planned to employ an Evolution Strategies-based approach as a Reinforcement
Learning algorithm to find an optimal and proactive task scheduling policy in such an envi-
ronment.
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APPENDIX

Below are tables with the raw data from the Section 5.3.

Table A.1: Makespan values.

Number of tasks Genetic Algorithm Evolution Strategies
Evolution Strategies -

Longest Job First

Evolution Strategies -

Shortest Job First

1000 51.13 45.63 42.49 43.44

2000 68.50 59.76 55.97 56.16

5000 86.24 86.24 82.13 83.54

10000 125.75 121.67 124.96 117.25

15000 163.03 153.52 154.26 152.31

20000 202.15 196.40 193.64 191.36

Table A.2: Throughput values.

Number of tasks Genetic Algorithm Evolution Strategies
Evolution Strategies -

Longest Job First

Evolution Strategies -

Shortest Job First

1000 20.12 22.08 23.71 23.20

2000 29.77 33.77 36.03 35.69

5000 58.29 58.41 61.10 60.11

10000 79.93 82.59 80.78 85.68

15000 93.00 97.81 97.78 99.08

20000 99.22 102.94 103.90 104.67
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Table A.3: Average Resource Utilization values.

Number of tasks Genetic Algorithm Evolution Strategies
Evolution Strategies -

Longest Job First

Evolution Strategies -

Shortest Job First

1000 20.10% 21.20% 22.70% 22.00%

2000 18.40% 20.25% 21.70% 21.30%

5000 21.90% 22.00% 22.80% 22.50%

10000 26.30% 27.30% 26.60% 28.20%

15000 30.40% 32.30% 32.20% 32.60%

20000 33.50% 34.90% 35.10% 35.50%

Table A.4: Average Execution Time values.

Number of tasks Genetic Algorithm Evolution Strategies
Evolution Strategies -

Longest Job First

Evolution Strategies -

Shortest Job First

1000 7.56 7.57 7.60 7.59

2000 7.71 7.74 7.75 7.75

5000 7.12 7.12 7.14 7.13

10000 6.85 6.85 6.86 6.85

15000 6.89 6.91 6.91 6.91

20000 7.12 7.09 7.12 7.10

Table A.5: Degree of Imbalance values.

Number of tasks Genetic Algorithm Evolution Strategies
Evolution Strategies -

Longest Job First

Evolution Strategies -

Shortest Job First

1000 4.96 4.70 4.40 4.50

2000 5.54 4.94 4.63 4.64

5000 4.55 4.59 4.36 4.44

10000 3.79 3.66 3.76 3.53

15000 3.28 3.07 3.09 3.05

20000 2.93 2.86 2.79 2.79
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Table A.6: Number of active VM instances over time for Evolution Strategies algorithm.
`````````````̀Time [s]

Number of tasks
1000 2000 5000 10000 15000 20000

0 0 0 0 0 0 0

25 1 1 4 9 15 20

200 14 29 53 104 162 203

1000 59 107 264 469 623 741

4000 112 219 458 744 940 1058

6000 102 205 462 751 945 1056

8000 110 217 473 773 959 1060

10000 49 101 239 456 629 755

12000 79 137 344 605 825 1011

14000 71 130 262 400 469 507

20000 178 312 569 718 771 795

30000 69 124 211 244 254 265

40000 0 0 0 0 0 0

Table A.7: Number of active VM instances over time for Evolution Strategies algorithm with
Longest Job First broker policy.

`````````````̀Time [s]
Number of tasks

1000 2000 5000 10000 15000 20000

0 0 0 0 0 0 0

25 1 0 4 10 15 21

200 15 29 56 104 161 203

1000 56 107 267 469 619 754

4000 117 215 458 759 939 1066

6000 103 204 462 750 955 1063

8000 108 219 475 773 942 1068

10000 49 93 243 459 622 758

12000 78 140 338 615 834 1002

14000 71 133 267 393 468 515

20000 178 316 562 717 766 793

30000 71 122 204 249 253 254

40000 0 0 0 0 0 0
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Table A.8: Number of active VM instances over time for Evolution Strategies algorithm with
Shortest Job First broker policy.

`````````````̀Time [s]
Number of tasks

1000 2000 5000 10000 15000 20000

0 0 0 0 0 0 0

25 1 1 3 9 15 19

200 16 28 55 106 166 205

1000 59 102 259 468 623 755

4000 120 211 456 749 938 1064

6000 101 206 462 754 942 1063

8000 108 217 472 760 945 1061

10000 50 95 240 454 622 757

12000 73 141 344 606 838 999

14000 69 129 265 397 471 508

20000 177 315 557 709 772 792

30000 72 125 208 248 260 258

40000 0 0 0 0 0 0
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