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1. Introduction

The Internet of Things (IoT) technology is gaining increasing popularity and is widely applied
across various industrial sectors such as smart cities, manufacturing, transportation, agriculture, smart
homes, wearable technology, and smart devices [1]. Among these sectors, smart healthcare technol-
ogy stands out, utilized for remote patient monitoring, commonly known as eHealth. Furthermore,
wearable technology has long been recognized as a means of monitoring patients’ health outside of
hospital environments [2], providing a high quality of life and prompt response to health challenges.
Traditional visits to healthcare providers are infrequent and may not offer the necessary continuous
care required for early disease detection. The utilization of IoT technology offers a promising solution
through wearable devices enabling continuous monitoring of health parameters.

To effectively address the challenges associated with health monitoring, it is crucial to prop-
erly store, integrate, and understand the collected data. During specialist visits, patients undergo mea-
surements of vital parameters, which are then used to assess overall health status, leading to diagnostic
conclusions. In tackling this challenge, an architecture is proposed, drawing inspiration from the for-
mal description of human perception, previously successfully applied in environmental monitoring
[3]. The proposed architecture consists of three key layers: Sensing, Integration and Association,
and Application and Diagnostic, as illustrated on the Figure 1.1. The Sensing layer encompasses
sensors for measuring patients’ vital parameters, communicating with data transmission equipment
in the cloud. The Integration and Association layer integrates and links sensor values into a com-
mon ontology, while the Application and Diagnostic layer contains algorithms and tools for disease
detection.

In the Sensing chapter, an overview of radio communications capable of transmitting data
over both long and short distances is provided, along with a review of sensors used in non-invasive
measurement of human physiological parameters. Wearable technology, whether medically certified
or uncertified, can track vital signs, potentially using data collected via smart technologies as input
for various machine learning algorithms [4]. Additionally, a distinction can be made between invasive
and non-invasive technologies used for monitoring key medical data [5]. One technology considered
in this study is a wearable device capable of assessing physiological parameters. The issue of sensor
connection, continuous data transmission, and processing providing real-time feedback to the user
is still a subject of debate despite the increasing popularity of these devices. Smartwatches, fitness
trackers, or other wearable devices are currently used for monitoring vital signs. These devices in-
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Figure 1.1. Observer network for health monitoring.

clude sensors for photoplethysmography (PPG), electromyography (EMG), accelerometry, electroen-
cephalography (EEG), electrocardiography (ECG), electrodermal activity (EDA), skin temperature,
blood oxygen saturation, etc. [6]. Moreover, battery charging and low-power wearable electronics
pose two complex problems. Depending on the data sampling frequency and telemetry, it is usually
necessary to refresh monitoring of important parameters while the system is awake and in daily use.
Although providing users with instant responses sounds appealing, it would drain the battery. An-
other issue that may arise for wearable devices used to track important metrics is the limited data
transmission to a cloud platform via a smartphone connected to the internet, either via WiFi or mobile
4G network [6].

Integrating and Associating technologies in healthcare, particularly through the application
of Internet of Things (IoT) ontologies, represents a significant advancement in the management and
monitoring of patient health. The Integration and Association layer, a critical component of healthcare
IoT frameworks, enables the comprehensive gathering, storage, and analysis of health-related data
from wearable devices. This data is meticulously organized within databases, either stored locally or
on cloud platforms, facilitating immediate and secure access to health metrics [7]. Ontologies such as
SAREF (Smart Applications REFerence) and its healthcare-focused extension, SAREF4EHAW, are
instrumental in overcoming the challenges presented by the diverse array of sensors and platforms in
the IoT ecosystem. These structured frameworks not only ensure the effective collation and interpre-
tation of data from multiple sources but also support personalized patient monitoring [8] and early
symptom detection [9], thereby enhancing the overall quality of healthcare services. The role of on-
tologies like SAREF4EHAW extends to the promotion of healthy lifestyles and the provision of early
warning systems for potential health issues, such as cardiovascular incidents, by enabling continuous

2



health monitoring and offering insights into the patient’s condition [10]. Moreover, the adaptability
of the SAREF ontology to the specific needs of different healthcare sectors underscores its impor-
tance in the digital transformation of healthcare, making it a cornerstone for interoperability and data
integration across various IoT applications and solutions [11]. As the IoT continues to evolve within
the healthcare domain, the expansion and rigorous validation of these ontologies are paramount. En-
suring their validity and reliability through comprehensive evaluation techniques is essential for their
effective implementation and the realization of their full potential in improving patient care. The
SAREF ontology, in particular, facilitates seamless communication between disparate IoT solutions
and applications, adjusting to the unique requirements of different sectors within the healthcare in-
dustry. This adaptability makes it a key tool for advancing digital healthcare, enabling the creation
of a more connected and efficient patient care ecosystem. While the direct application of ontologies
in healthcare ventures beyond the scope of this discourse, their integral role in the technological inte-
gration and enhancement of healthcare systems is undeniable. By fostering a more collaborative and
data-driven approach to patient care, these ontologies pave the way for a future where healthcare is
not only more responsive but also more attuned to the individual needs of each patient.

The acquired data can be analyzed using machine learning algorithms to predict and di-
agnose various health problems and diseases, which is part of the Application and Diagnostic layer.
Smart technologies utilizing various machine learning (ML) algorithms can be used for disease pre-
diction and identification [12]. One technique for disease detection and prediction using wearable
technology is machine learning (ML) [13]. ML algorithms are used to find patterns in data that a
human observer could not identify. Wearable devices can serve as an alternative for monitoring vital
parameters in hospitals where monitoring patients can be difficult and time-consuming. For example,
the random forest method [14] can be used to determine the relationship between pain self-assessment
scale and measurements made using wearable technology. Furthermore, specific patient data such as
gender, age, blood pressure, smoking status, and cholesterol levels must be monitored to establish a
diagnosis [15]. To achieve the highest level of prediction accuracy, several ML approaches are ap-
plied to data obtained, in some cases, from both healthy and diseased patients. This research analyzes
the contribution of the ML algorithms used in assessing disease risk. To utilize appropriate ML tech-
niques, collected data are stored and separated into test and training data sets before the processing
phase [15]. Furthermore, during the development lifecycle of ML solutions, many issues and gaps
have been identified, particularly regarding the availability of data sets, versioning ML models, and
overall system performance [16], but they are not covered in this work.

This paper presents a network of observers for health monitoring, inspired by the archi-
tecture of the Forest Fire Watch Network and adapted to a case study of patient health monitoring
using IoT and wearable devices. Sections 2 and 3 provide a review of related works in wearable de-
vice research and radio communications available for data transmission, as well as machine learning
algorithms for disease detection, respectively.
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2. IoT Implementation

The integration of wearable devices into healthcare represents a significant step towards facilitating
continuous and targeted patient care. These devices, increasingly employed for medical data collec-
tion, play a crucial role in ensuring timely and accurate information acquisition. Data are collected
from users continuously over a defined period. The devices consist of one or a combination of multiple
sensors that enable precise and accurate measurements. Following data collection, this information
must be securely stored in a suitable database to enable seamless processing and transmission to end-
users. Subsequently, the data is relayed to its destination utilizing chosen radio technology, a decision
contingent upon factors like energy consumption, data size, and distance from the receiver, as illus-
trated in Figure 2.1 [17]. Data can be continuously sent to the database or stored in the wearable
device’s internal memory and transmitted to the database after a certain period. It is necessary to con-
sider the reduced use of device battery resources and enable their longer lifespan on a single charge.
This comprehensive technological infrastructure not only facilitates precise data collection but also
ensures its secure distribution, thereby advancing the quality and efficiency of healthcare provision.
In this section, a brief overview of the technologies depicted in Figure 2.1, used for data transmission,
is provided. Technologies vary depending on the distance at which they can transmit data, power, and
the amount of data they can send. A brief overview of radio technologies used in wearable devices
will provide better insights into choosing the ideal radio technology for data transmission.
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Figure 2.1. Range of communication protocols [17].
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Radio Frequency Identification (RFID) technology facilitates data transmission through
devices known as tags and readers, capable of communicating over distances up to 100 meters, es-
pecially with active tags. Although originally intended mainly for identification, contemporary RFID
devices have expanded their functionality to include sensing and transmitting sensed data through the
same protocols [18]. Data are transmitted via electromagnetic waves, allowing tags to send informa-
tion back to the reader without direct contact or line of sight. RFID is categorized based on frequency
ranges into low-frequency (LF) tags operating up to 135 kHz, high-frequency (HF) tags including
Near Field Communication (NFC) at 13.56 MHz, and ultra-high-frequency (UHF) tags ranging from
865 MHz to 928 MHz, with active UHF tags reaching the furthest distances. Each frequency band
has distinct characteristics and applications, from access control and animal identification in LF and
HF bands to logistics and vehicle tracking with UHF tags. This classification by frequency supports
various use cases, balancing range, speed, and cost to meet specific needs across different sectors
[19].

ZigBee offers an alternative to Bluetooth, the technology can cover distances up to 150
meters outdoors.Data through ZigBee technology are transmitted across three main frequency bands:
868 MHz in Europe, 915 MHz in North America and Australia, and a worldwide available 2.4 GHz
band. These frequencies allow for data rates of 20kbps, 40kbps, and up to 250kbps, respectively. This
spectrum of operation ensures that ZigBee networks do not interfere with other common wireless
networks such as Wi-Fi or Bluetooth, due to their different operational bands [20]. Designed for low
power consumption, ZigBee devices can operate on batteries for extended periods, often measured in
years, making them ideal for applications where long battery life is crucial.

LPWAN (Low Power Wide Area Networks) technologies facilitate data transmission across
a wide variety of devices, including sensors and actuators, designed for IoT applications. These net-
works are distinguished by their long-range communication capabilities, often exceeding distances of
up to 10-40 km in rural or less dense environments and 1-5 km in urban settings, thereby providing
extensive coverage even in challenging indoor and underground locations [21]. Data within LPWANs
are transmitted at low data rates, typically ranging from a few hundred bits per second to tens of kilo-
bits per second, which aligns with the technologies’ emphasis on energy efficiency and minimal power
operation. This efficiency ensures that devices can operate on battery power for extended periods, of-
ten exceeding ten years, without the need for frequent recharging or battery replacement. LPWANs
primarily utilize sub-GHz frequency bands (e.g., 868 MHz in Europe and 915 MHz in the US) for
communication, leveraging the favorable propagation characteristics of these lower frequencies to
achieve robust and reliable long-range connectivity. A notable aspect of LPWANs is their capacity to
support a vast number of devices connected to a single receiver or network gateway. This capability
is crucial for IoT applications, which may involve the deployment of thousands, or even millions,
of connected devices within a single network. The scalability of LPWAN technologies ensures they
can accommodate the burgeoning demand for IoT connectivity, providing a reliable communication
framework for a wide array of applications, from agricultural monitoring and smart city infrastructure
to utility management and asset tracking.
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Bluetooth is used for RF-based short-range communication between mobile and station-
ary devices. To counteract interference and fading, this system employs frequency hopping methods
(FHSS) in the ISM band over 79 channels. The best case data rate option for Bluetooth, which runs
on 2.4 GHz frequency, allows up to 3 Mb/s, and the usable range is between 10 and 100 meters [22].
The Piconet communication architecture, which consists of one master device and up to seven slave
devices, is the most fundamental type of Bluetooth communication. When the radio is activated and
Bluetooth is transmitting or receiving data, the power consumption ranges from 2.5 to 100 mW [22].
Other Bluetooth protocols exist, including Bluetooth Low Energy (BLE), Bluetooth v3.0, Bluetooth
v4.0, and Bluetooth v5.0. BLE protocol is used in devices with short battery live, such as smart-
watches and fitness trackers. It consumes less power than the original Bluetooth technology, thus
increasing the battery life [2].

Bluetooth Low Energy (BLE) technology was introduced as a solution to replace cables
for connecting devices, particularly those operating with lower data rates (maximum 1Mbps) over
short distances (theoretically up to 100 meters), all while consuming minimal power. With subse-
quent advancements, Bluetooth 4.0 emerged, also known as Bluetooth/LE, offering simplified pairing
features and higher data rates (up to 24Mbps, Wi-Fi-based), all while maintaining lower power con-
sumption. Its primary objective is to facilitate the connection of sensors and actuators within IoT
environments [23].

LoRa employs a "star of stars" network architecture for long-range radio communication,
operating at frequencies of 433MHz, 868MHz, or 915MHz. It utilizes Chirp Spread Spectrum mod-
ulation, achieving data rates from 290bps to 50kbps with high power efficiency [24]. The achievable
range varies based on radio power, spanning from 2-5 km in urban areas to 45 km in rural regions.
This technology addresses IoT needs by providing low latency, wide coverage, and efficient data
transmission over shared channels. It balances transmission speed and range through spreading factor
(SF), bandwidth (BW), and code rate (CR). Ideal for applications requiring long-range connectivity,
LoRa finds use in environmental monitoring, agricultural measurements, and parking lot occupancy
tracking.

Wi-Fi technology, as described in [25], facilitates data transmission across a variety of de-
vices, including computers, smartphones, and other Wi-Fi-enabled devices. It operates effectively up
to a maximum distance of approximately 100 meters under optimal conditions. Data through Wi-Fi
is transmitted over radio waves, enabling high-speed internet access without the need for physical
connections. The technology operates within the 2.4 GHz and 5 GHz frequency bands, allowing for
diverse and flexible usage scenarios from simple web browsing to streaming high-definition videos.
Wi-Fi’s design focuses on user convenience and supports a range of data transmission speeds, depend-
ing on the specific Wi-Fi standard being used, such as 802.11b, 802.11g, 802.11n, or more advanced
protocols like 802.11ac, which can offer speeds from as low as 11 Mbps to more than 1 Gbps. De-
signed with energy efficiency in mind, Wi-Fi includes features like power-saving modes to minimize
energy consumption for devices, particularly useful for battery-powered devices. It supports a wide
array of devices per network, limited more by the bandwidth availability and network setup than by
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the technology itself. The exact number of devices that can connect to a single access point varies but
can range from a handful to several hundred, making Wi-Fi suitable for environments ranging from
home networks to businesses and public hotspots.

The NB-IoT technology primarily targets Machine Type Communication (MTC) devices
located in remote areas, necessitating a coverage threshold of at least 23 dB. Unlike LoRa, NB-IoT
deployment is confined to areas serviced by 4G/LTE base stations, rendering it unsuitable for rural
or suburban regions lacking 4G coverage. The cost efficiency of the NB-IoT network enables the
deployment of a multitude of devices with battery longevity exceeding 10 years. It is anticipated that
NB-IoT network expansion will offer cost-effective services in remote regions in the future [26].

Considering the range offered by various technologies, Bluetooth Low Energy (BLE) and
Long Range (LoRa) stand out as technologies with potential applications in the field of eHealth, ow-
ing to their potential in terms of low energy consumption and optimal range. BLE functions as a
short-range technology, transmitting data over shorter distances with reduced energy consumption
while maintaining speed and data quantity at an optimal level. On the other hand, LoRa technology
facilitates the transmission of data over long distances, similarly preserving speed and data quantity
per transmission. The following sections will provide detailed explanations of BLE and LoRa tech-
nologies through case study examples, emphasizing their capabilities and benefits within the eHealth
sector and their application in everyday life.

Furthermore, the technologies were presented through case studies involving two wrist-
bands. The BLE wristband underwent testing to determine the range distance in an enclosed space,
thereby indicating the optimal receiver position for data collection. In contrast, the LoRa wristband
underwent tests for both the range distance and the accuracy of measured parameters such as heart
rate and temperature. This practical experimentation provided valuable insights into the performance
of both technologies in real-world scenarios, offering significant implications for their application in
eHealth.
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2.1. Bluetooth Low Energy (BLE)

The Bluetooth Low Energy (BLE) protocol operates on frequency 2.4GHz band, divided into 40
channels width 2MHz, Figure 2.2. Three channels 37, 38, and 39, on frequency 2402, 2426, and 2480
MHz, are used for advertising and discovery services, and they are called advertising channels. The
other 37 channels, on frequency between 2400 to 2480MHz, are used for transferring data between
devices [27].

Figure 2.2. BLE sharing 2.4GHz frequency band.

The BLE transceivers use advertising events for broadcasting small blocks of data or to
agree on the parameters of the connection established in the data channels. The advertiser, the device
which has some data to transmit, sends an advertising frame. The advertiser can send 31-bit data
directly to the advertising frame or can establish a connection in the data channel, and after that
the advertiser, starts receiving and waits for possible connection establishes request. Once a sent
connection request has been received by a single device running as a device that wants to connect,
the two devices can proceed with the pear-to-per connection in the data channels. If the connection
between the two devices is made in the data channel, the device that initiated the connection is master

and the advertiser becomes slave. Communication between master and slave devices starts after the
master device sends frame to slave. Until one of these two devices has a job to send or until the
current connection event ends, the master and slave devices send a frame on the same channel. The
communication channel closes if two are received for the second frame with a CRC error by master

or slave or either the each of devices misses a radio packet [28]. The described process is shown in
the Figure 2.3.
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Figure 2.3. Display device rounding, connection establishment, data transfer, and connection
established ending in BLE.

2.1.1. Connecting BLE to Android device

Low-cost BLE bracelets are becoming more popular and are increasingly used to monitor the vital
parameters of patients. The data collected from the bracelet of each patient needs to be downloaded
and stored in a database. To enable their download, an Android application was implemented in a
way that scans available devices in range, connects to them, downloads their data and saves data in
a database. The following sections shows the parts of the Android application code responsible for
scanning and connecting devices.

After launch, the Android application initiates a search for available devices in range, scans
available devices and saves them in an internal database with their MAC address, name and Received
signal strength indication (RSSI). Vital parameters data starts downloading after connecting to an
individual bracelet.

1 YCBTClient.startScanBle(new BleScanResponse() {

2 @Override

3 public void onScanResponse(int i, ScanDeviceBean scanDeviceBean) {
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4 if (scanDeviceBean != null) {

5 if (!listVal.contains(scanDeviceBean.getDeviceMac())) {

6 listVal.add(scanDeviceBean.getDeviceMac());

7 deviceAdapter.addModel(scanDeviceBean);

8 list_of_devices.add(scanDeviceBean);

9 }

10 rssi_values = String.valueOf(scanDeviceBean.getDeviceRssi());

11
12 Log.e("device", "mac=" + scanDeviceBean.getDeviceMac() + ";name=

" + scanDeviceBean.getDeviceName() + "rssi=" + scanDeviceBean

.getDeviceRssi());

13 }

14 }

15 }, 6);

16 break;

Listing 2.1. Scan devices within range and save them to the list.

Once the device scanning process is complete, the Android application connects to the
individual scanned device. The Android app connects to each device on the list starting with the
first device on the scanned list. After the bracelet is connected, the Application initiates the download
of the measured data.

1 ScanDeviceBean scanDev = list_of_devices.get(k);

2 SPHelper.setParam(MainActivity.this, "key", scanDev.getDeviceMac());

3 connectedMAC = scanDev.getDeviceMac();

4 try {

5 YCBTClient.connectBle(connectedMAC , new BleConnectResponse() {

6 @Override

7 public void onConnectResponse(final int i) {

8 connected.setText("Connected to " + connectedMAC);

9 }

10 });

11 } catch (Exception e) {

12 Log.e("Error", String.valueOf(e));

13 }

14 break;

Listing 2.2. Connecting to the devices sorted in a list.

Once the device scanning process is complete, the Android application connects to the individual
scanned device. The Android app connects to each device on the list starting with the first device
on the scanned list. After the bracelet is connected, the Application initiates the download of the
measured data.

10



2.1.2. Collecting data

The process of data collection of BLE bracelets using the Android applications was developed so that
measurement data from patients could be collected and transferred to a database. Once the desired
bracelet is connected to the app, it starts downloading data according to the data exchange protocol
between the two BLE devices. At the application level, data is retrieved from visible bracelets within
range, after which the device on which the Android application is running sends data via an Internet
connection to the database. It saves the downloaded data to the database for each device depending
on its MAC address, and the data is ready for further processing after saving to the database. Figure
2.4 illustrates the process of Android applications up to the time the data is saved to the database.

Scanning BLE  
bracelets 

(in the range)

Connecting BLE  
device

Disconnect BLE 
 device


Disconnect BLE 
 device


Connect new BLE device

Android app (SDK)

Storing data 
(Firebase)

 Scanning devices: 
YCBTClient.startScanBle(new 
BleScanResponse() {...

 Connecting deivce: 
YCBTClient.healthHistoryData(0x
0509, new BleDataResponse() 
{...

 Storing data: 
String oxy_data = "mem,host=" + 
connectedMAC + " h=" + 
AllInts.get(k).Oxygen

 Disonnecting device: 
YCBTClient.disconnectBle();

Figure 2.4. Process of Android application to store measured data from patients.

Utilization of BLE bracelets in real environments nursing homes and hospitals for monitor-
ing vital parameters of patients heavy depend on the straight of their range. The range of a bracelet is
testing as signal strength data, which has been shown in this section. In this scenario the BLE bracelet
serves as a signal transmitter, the Android application running on the device as a receiver. One re-
ceiver, an Android application, in that case, retrieves data from all transmitters in range. To measure
the signal strength, the Fitness Tracker BLE bracelet was used as a transmitter and a receiver of the
Huawei MediaPad T3 10 tablet on which the implemented Android application was implemented and
running. The measurement were performed by connecting the bracelet to the Android application and
downloading the data, and among the downloaded data was the RSSI signal strength of the transmit-
ter. RSSI data is stored in a database along with the read time for each BLE bracelet depending on
their MAC address.
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Figure 2.5. Heat map of the sixth floor of the faculty building with graphs of RSSI signal distribution
graphs for transmitter position #1.

Figure 2.6. Heat map of the sixth floor of the faculty building with graphs of RSSI signal distribution
graphs for transmitter position #2.
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Indoor measurements were performed on VI. floor of the Faculty of Electrical Engineering,
Mechanical Engineering and Naval Architecture in Split (FESB). The BLE bracelet, and transmitter,
are placed in two positions inside the hallway as shown in Figure 2.5, position #1 and position #2,
while the reader, Android tablet application, moved by marked positions.

Figure 2.5 and Figure 2.6 shows the simulation, a heat map for the 2.4GHz frequency, where
it shows the signal strength distribution for the transmitter power of -30dBm. The graphs show the
measurement results for the three scenarios, the first measurement was performed in the hallway on
a direct line between the bracelets and tablets. The second measurement was performed in the A608

office and the last in the A612 laboratory. After processing the obtained results, the obtained graph
shows the range of values of the RSSI signal for each distance and scenario.

For position #1 of the receiver, the obtained data shows for the measurements in office
A608 which were performed behind one and two non-bearing walls. The sharp signal drop shown
on the Box plot graph is the signal strength readings behind two non-load bearing walls, while the
weaker signal strength drop shown on the graph is the value for the readings behind one non-load
bearing wall. When the receiver is located in the A612 laboratory, the signal strength is recorded at
two positions located behind a non-bearing wall. The signal strength in the hallway was recorded
at thirteen positions, where the signal strength of the BLE wristband decreased with distance with
sudden signal drops at certain distances.

By placing the transmitter in position #2, the obtained ddata shown for the receiver position
in laboratory A612 and office A608 show the signal strength values from one non-bearing wall. By
increasing the distance for those two scenarios, the signal strength decreases with increasing distance,
with a sudden increase in signal strength at certain distances. The signal strength for readings in the
hallway on the direct line of the transmitter and receiver was recorded for thirteen positions where the
distance between the transmitter and the receiver decreased as the distance increased. For position
#2 of the transmitter in this scenario, the signal strength was read at a distance of 18.03m, and the
receiver was located behind a non-bearing wall.

The range of signal strength values for each distance varies depending on the way the signal
propagates through space, i.e. due to fading, interference, rejection, reflection and so on. The signal
strength, between the transmitter and the receiver, decreases with increasing distance. In the hallway,
the signal strength decreases more slowly, as long as the transmitter and receiver are on the same
line, while when moving the receiver in space, the signal strength decreases sharply and the signal is
weaker. Insight into the obtained results shows that the coverage of the BLE device is up to 18.03 m,
which allows a minimum coverage of three rooms of 20m2, one with one receiver.

In order to collect all data from wearable BLE devices, it is necessary to position the receiver
in the optimal place in the space. Depending on the environment in which it is located, the position
of the receiver is unique for each location due to the influence of Multipath on signal propagation in
space. Multipath affects signal propagation in space and signal reception in the same area for another
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Figure 2.7. Normalized histogram showing the obtained RSSI values.

Figure 2.8. The Cumulative Distribution Function of wearable BLE device.
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measurement will have small but different values for the same area. Depending on the measured
signal strength of wearable BLE devices, it is possible to statistically explain the optimal position of
the receiver in the environment. The optimal position of the receiver on a support can be the value that
deviates the least from the mean value of the signal, i.e. the place where the difference between the
minimum and maximum value is the smallest, it can be the place where the strongest signal strength
from the bracelet is received. The measured values of the RSSI signal for positions #1 and #2 are
shown via a normalized histogram in Figure 2.7. The left graph shows the signal strength distribution
for position #1, while the left graph shows for position #2. Histograms show the measurement results,
where on the abscissa are the measurement results within the range of the measured size, and on
the ordinate is the strength of the received signal from the wearable bracelet. The displayed results
include all measurement points at positions in the hallway, office and laboratory for both displayed
histograms. For transmitter position #1, the measured values in the office include the values measured
behind two non-load-bearing walls, while for position #2 the values for the queue position include
only the values behind one non-load-bearing wall. The distribution of values for position #1 has a
maximum at two places in the value range of -85dBm to -95dBm. While at the signal distribution
for position #2 the maximum is in the interval between -85dBm to -90dBm. If the results of the
normalized histogram are presented via the cumulative distribution function, Figure 2.8, it is possible
to determine the optimal position of the receiver. From the preliminary results, it is evident that 70%
(± 5%) of the values are below the range of -85dBm. Therefore, the optimal position of the receiver
would be in the area below -85dBm and would enable maximum reception of the signal to the receiver.
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2.2. LoRaWAN

LoRaWAN is a Media Access Control (MAC) protocol designed for low-power devices, primarily
those powered by batteries, within wide area network systems. The initial specification for this pro-
tocol was introduced in 2015, followed by a subsequent specification in 2017. LoRaWAN operates
on an unlicensed ISM frequency spectrum, offering a low data rate, with specific frequency bands
varying by region. Each region has a designated portion of the ISM frequency spectrum exclusively
allocated for LoRa traffic. For instance, in Europe, LoRa transmission is intended within the fre-
quency range of 863 to 870 MHz, with a fixed frequency of 433 MHz. Different frequency plans are
established for each region, defining parameters crucial for both uplink and downlink communication
between the LoRa module and the gateway, including spreading factor (SF) and bandwidth (BW).

According to the LoRaWAN specifications applicable to the EU region, end-devices are re-
quired to have access to a minimum of 16 frequency channels within the frequency range of 863 to 870
MHz. Specifically, the first three channels, operating at 868.1, 868.3, and 868.5 MHz frequencies, are
mandated to be implemented for communication between end-devices and gateways. Furthermore,
the ETSI (European Telecommunications Standards Institute) standard [29] stipulates that each LoRa
module utilizing the EU863-870 frequency plan must include three predefined channels, namely:

• 868.10 MHz, bandwidth = 125 kHz,

• 868.30 MHz, bandwidth = 125 kHz,

• 868.50 MHz, bandwidth = 125 kHz.

Uplink channels facilitate data transmission from LoRa end-devices to gateways, while
downlink channels are exclusively designated for transmitting data from gateways to LoRa end-
devices. Additionally, the EU region permits operation at frequency channels ranging from 433.05
to 434.79 MHz. During downlink communication, the LoRa module initiates two time frames within
which the gateway is expected to respond. In the first time frame, the downlink channel frequency
aligns with the uplink frequency. Conversely, for the second time frame, a fixed predefined data rate
and frequency are determined. By default, a frequency of 869.525 MHz, a Spreading Factor (SF) of
12, and a bandwidth of 125 kHz are utilized (The Things Network - TTN employs a nonstandard SF9
and 125 kHz bandwidth data rate on frequency 869.525 MHz).Under the ETSI standard, the 863-870
MHz band is further divided into five additional frequency bands, labeled G, G1, G2, G3, and G4.
Each of these bands comes with precisely defined limitations, including the frequency range and duty
cycle (Table 2.1).

The duty cycle determines the maximum proportion of a specific time period during which
an individual device (such as a LoRa module or gateway) can utilize a particular channel to transmit
its packets. Following data transmission, the device must await the expiration of this period before
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Table 2.1. G frequency ranges

Frequency area (MHz) Duty cycle

G 863-870 ≤0.1 %
G1 868-868.6 ≤1 %
G2 868.7-869.2 ≤0.1 %
G3 869.4-869.65 ≤10 %
G4 869.7-870 ≤1 %

it can resume transmitting. By employing a duty cycle, the likelihood of collisions during packet
transmission between two or more legitimate devices is reduced.

LoRaWAN operates within three bandwidth ranges: 125 kHz, 250 kHz, and 500 kHz. The
selection of one of these three bands depends solely on the frequency band specified for the particular
regional area (for instance, 125 kHz and 250 kHz bandwidths are utilized in Europe). Depending
on the bandwidth and operating frequency, the lower and upper cutoff frequencies can be calculated.
The lower cutoff frequency is determined by subtracting half of the bandwidth from the operating
frequency, while the upper cutoff frequency is calculated by adding these two values. For instance,
with an operating frequency of 867.1 MHz and a 125 kHz bandwidth, the lower cutoff frequency
would be 867.0375 MHz and the upper cutoff frequency would be 867.1625 MHz. Regarding the
transmission power of end devices and gateways, there are six predefined options: 2, 5, 8, 11, 14, and
20 dBm. For the EU863-870 frequency region, a default transmission power of 14 dBm is specified,
although the G3 band can utilize transmission power up to 27 dBm, typically employed for downlink
communications.

Network server

LoRaWAN
gateway

LoRa

LoRaWAN
gateway

LoRaWAN
end devices

IP network

Application server

Figure 2.9. LoRaWAN architecture.
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MHDR MACPayload MIC

FHDR FPort FRMPayload (encrypted)

DevAddr FCtrl FCnt FOpts

Preamble PHYHeader PHYPayloadPHY CRC CRC

Figure 2.10. Structure of LoRaWAN packet.

2.2.1. LoRaWAN Architecture

LoRaWAN adopts a star network architecture (depicted in Figure 2.9), comprising three key partici-
pants: LoRa modules (End Nodes), which can be tailored for various applications, one or more LoRa
gateways, and a central network server. The gateway facilitates the transmission of packets between
the LoRa module and the central network server. Packet transmission within the LoRaWAN network
occurs between modules and gateways using the LoRaWAN protocol, while communication between
the gateway and the central server utilizes high-speed network technologies like WiFi, Ethernet, 4G,
and 5G. The central server then relays the received packets to the application server for further pro-
cessing and application usage.

2.2.2. End Devices

LoRaWAN end nodes are categorized into three classes: Class A, Class B, and Class C [30]. In
essence, Class A devices are designed to transmit information to the gateway device at any time, typ-
ically triggered by events, with a focus on minimizing battery consumption, particularly for battery-
operated devices. Class B devices are synchronized with time and have specific time slots allocated
for communication. Conversely, Class C devices remain consistently active, enabling immediate mes-
sage reception from gateways. Furthermore, as demonstrated in this study, the cost-effectiveness of
LPWA (Low Power Wide Area) devices enables malicious attackers to launch jamming attacks using
readily available components like a radio module (such as LoRa) and Arduino.

18



Figure 2.11. An example of LoRa packet containing preamble.

2.2.3. Structure of the LoRaWAN packet

The structure of the LoRaWAN packet is defined according to the LoRaWAN specification, as de-
picted in Figure 2.10. The transmission of LoRa packets begins with a preamble, followed by the
radio and MAC layers of the packet. The preamble header is crucial as it allows the receiver to
filter incoming traffic based on the received preamble, thereby determining whether the packet is
intended for it. The preamble header comprises several up-chirps followed by an additional two up-
chirps and two and one-quarter down-chirps (as illustrated in Figure 2.11). The conclusion of the
preamble header is marked by the last four and one-quarter chirps. Upon receiving the preamble, the
receiver can only ascertain the presence of a transmitting LoRa module; however, it cannot identify
the specific module to which the packets belong. The importance of the preamble lies in its role in
accurately filtering modulated signals, especially given the utilization of ISM radio frequencies and
the multitude of unlicensed devices transmitting LoRa signals. Therefore, precise detection of the
LoRa signal is imperative. The MAC layer resides above the physical layer and is responsible for
encrypting application data. It comprises the MAC header, which specifies the message type, and the
MAC payload, containing encrypted information. Following the MAC payload header is the Message
Integrity Code (MIC) header [31], which ensures packet integrity using the AES-128 CMAC protocol
and the Network Session Key (NwkSKey). LoRaWAN generates both the network NwkSKey and
the Application Session Key (AppSKey) from the 128-bit AES AppKey. The AppSKey is utilized to
encrypt the application payload (FRMPayload) with AES-128 in Counter mode (CTR). Additionally,
the MAC payload includes a frame header (FHDR), wherein the first four bytes represent the address
of the end device to which the packet belongs. The FHDR also contains the Frame Counter, which
increments with each subsequent packet. The Frame Counter (FCnt) in LoRaWAN serves to prevent
potential replay attacks.

GlobalSat LW-360HR is a wearable device with BLE/ GPS/ LoRa functions. The technol-
ogy covers a wide range of active areas based on GPS satellite positioning and LoRa® ’s long-distance
transmission technology (Up to 10+ KM) to integrate the mobile app and cloud application. The de-
vice implements step/calories/distance monitor, heart rate information and skin temperature.

2.2.4. Heart rate measurements

Heart rate measuring properties of the GlobalSat were examined through the experiment (Figure
2.12), following the previously described methodology, on 5 subjects, comparing the heart rate read-

19



ings form the bracelet and the pulse oxymeter. The experiment resulted with 157 heart rate data from
all subjects. The distribution of the readings from the GlobalSat and the pulse oxymeter is presented
on the Figures 2.13 and 2.14, where small deviations in reading can be noticed. Figure 2.15 illus-
trates the error of the GlobalSat readings when compared with the pulse oxymeter as a reference. It
can be noticed that the reading errors are within the range of -26 beats per minute (bpm) and 26 bpm.
However, 80% of the readings are in the error range from -4 bpm to 4 bpm. With normal heart rate for
sitting (office work) activities being 60 bpm - 100 bpm, the error represents 4 % - 6 % of the overall
device reading.

Figure 2.12. GlobalSat and HR pulse oxymeter comparison
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Figure 2.13. Comparison of the GlobalSat HR readings with pulse oxymeter

Figure 2.14. Scatterplot of the GlobalSat HR readings with pulse oxymeter readings
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Figure 2.15. The error from the GlobalSat bracelet readings compared with the pulse oxymeter

2.2.5. Temperature measurements

Temperature measurement feature was also conducted for the GlobalSat bracelets as previously de-
scribed, comparing the measurements with the T-type thermocouples on the bottles with the heating
water (Figure 2.16). The results are graphically presented on the Figure 2.17 with the average error
GlobalSat bracelet of 2.6°C. The error has its peak (7.26°C / 8.27 °C) with the sudden changes in
temperature, while in the steady conditions, the error between GlobalSat and the thermocouples is
at its minimum (0.93°C / 1.08 °C) due to slower response of the bracelet to changes in temperature,
which is not the case for the human skin at the wrist.

Figure 2.16. Setup for GlobalSat bracelet temperature features testing

22



Figure 2.17. Comparison of the GlobalSat temperature readings with thermocouple readings

2.2.6. LoRa range

From the manufacturers info, the device supports BLE function (Link distance - 10 m) and the LoRa
transmit distance from 1 km to 3 km (Open space - 3 km / City - 1 km). Figure 2.18 shows locations
of packets captured by public LoRaWAN gateways that were sent by GlobalSat bracelets during the
period of three months. Red dots present location of public LoRaWAN The Things Network gate-
ways, while blue circles show GPS location sent by GlobalSat bracelet via LoRaWAN radio that was
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forwarded to our dedicated server for further processing and visualization. As can be seen, GlobalSat
bracelets equipped with GPS and LoRaWAN radio modules can serve as a real-time tracking device
in urban (and rural) areas.

Figure 2.18. Captured GSP location of LoRaWAN GlobalSat bracelets sent as a part of a LoRaWAN
packet during a period of three months.
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2.3. Wearable Devices - Sensors

In today’s era of advancing technology, wearable devices have emerged as indispensable tools for
monitoring and managing various aspects of health and wellness. These devices have revolutionized
the way we track and understand our bodies, offering insights into vital parameters and potential
health issues in real-time. As wearable technology continues to evolve, the need for efficient data
transmission from these devices to central databases or other connected platforms becomes increas-
ingly crucial. Among the plethora of radio technologies available, Bluetooth and Bluetooth Low
Energy (BLE) stand out as the most widely utilized for this purpose. BLE, particularly, has become
the head for transmitting data from wearable devices to central repositories, thanks to its low power
consumption, reliability, and widespread compatibility. This technology has facilitated seamless com-
munication between wearables and other devices, enabling the integration of health data into broader
healthcare systems and applications.

The presented radio technologies are used for transmitting data measured by wearable de-
vices for non-invasive vital parameter measurement. In this part, sensors used in wearable devices
to detect various diseases will be presented. Table 2.3 presents the performance of these devices,
including their sensor capabilities, energy consumption, battery life, and communication protocols.
To ensure wearable technology is comfortable to wear, the size, shape, and warmth of the product
must fall within an acceptable range. Consequently, different types of batteries, such as lithium poly-
mer, lithium-ion, and cell batteries, are used in wearable technology. Continuous power supply is
crucial for healthcare solutions to ensure the proper functioning of the devices. Power sources for
these devices can be rechargeable or non-rechargeable USB-compatible batteries, as mentioned in
[32]. The overall energy consumption depends on factors such as the amount of collected data, sen-
sor design complexity, and the number of transmission and reception states. Each gadget is unique,
and wearable technology manufacturers have conducted studies on energy consumption, as shown
in Figure 2.1. Wearable technology utilizes different sensors depending on their purpose, such as
smartwatches and fitness tracking devices [6]. Each sensor in a wearable device measures a specific
quantity, and the combination of these quantities yields the desired result. Commonly used sensors
in wearable technology include PPG, EMG, accelerometers, EEG, EKG, EDA, gyroscopes, magne-
tometers, barometers, skin temperature sensors, blood oxygenation sensors, and others.
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Table 2.2. Unique characteristics of wearable technology.

Ref. Wearable device Sensors

Power
(current)
consump-

tion

Battery Communication
protocol

[14] BIOPAC PPG100C,
RSP100C

5 mA / USB

[6] Empatica E4

PPG, EDA,
Infrared

Thermopile,
3-axis

accelerometer

250mA Lithium-ion
(rechargeable)

BLE

[6] SPEAC EEG, ECG,
EMG

600mA Lithium-polymer
(rechargeable)

Wi-Fi

[6] ByteFlies Sensor
Dots

3-axial
acceleration

(ACC), 3-axial
gyroscope

(GYR)

65mA Lithium-polymer
(rechargeable)

Wi-Fi

[6] Epi-Care Free 3-dimensional
accelerometer

700mA
control

unit,
900mA
sensors

Lithium-polymer
(rechargeable)

Bluetooth

[32]
MindWave
Mobile II

(Neurosky)
EEG/ECG 80mA AAA battery Bluetooth V2.1

[33]
Wearable
Biometric

Patches (WBP)

ADT7420 digital
temperature

sensors

0.21mA
sensor

/ Bluetooth

[34]
Galvanic skin

response (GSR)
(BlTalino Kit)

EMG, ECG,
EDA, EEG,

ACC, LUX, BTN
65mA Lithium-polymer

(rechargeable)
BLE, Bluetooth

[35] V07 Smart
Wristband [36]

Heart rate
monitor

Pedometer,
Sedentary

reminder, Sleep
monitor

40mAh Lithium-polymer
(rechargeable)

Bluetooth V4.0
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Table 2.3. Unique characteristics of wearable technology.

Ref. Wearable device Sensors

Power
(current)
consump-

tion

Battery Communication
protocol

[37] Fitbit ECG, EDA
Charging

dock /USB
charging

Lithium-polymer
(rechargeable)

Bluetooth V4.0

[38] MetaMotionR
Accelerometer,

Gyroscope,
Magnetometer

100mA Lithium-polymer
(rechargeable)

BLE

[39] MVN Link -
Xsens

3D
Accelerometer,
3D Gyroscope,

3D
Magnetometer,

barometer

150mAh Lithium-Ion
(rechargeable)

WiFi

[40] Intelligent mask
(Cusstom made)

Triboelectric
Respiratory

sensors
Bluetooth

[41] ISFET Sensor
Patch

Na+, K+, and
PE/PP

microfluidics
15 mA USB charge USB

[42] Shimmer device

Accelerometer,
Gyroscope, Pres-
sure/Temperature

Sensor (EEG)

1.23mA Lithium-Ion
(rechargeable)

Bluetooth

[42] Samsung Gear
Sport

Accelerometer,
Barometer, Gyro
sensor, Optical

HR sensor, Light
sensor (EEG,

PPG)

300mAh Lithium-Ion
(rechargeable)

Bluetooth, Wi-Fi

[43] BITalino Kit
EMG, ECG,
EDA, EEG,

ACC, LUX, BTN
65mA Lithium-polymer

(rechargeable)
BLE, Bluetooth

[44]

ADXL - 335
(connected to

Arduino
MEGA-2560)

3-axis ACC 350µA Battery /
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3. Application and Diagnostic - ML algorithms

The machine learning techniques used to process the data obtained from non-invasive wearable tech-
nologies are summarized in the current section. One technique for detecting and predicting disease
is machine learning, which uses computer learning from data processed, trained, and tested using
data from wearable devices [45]. To learn more about the connections between the data aspects,
several ML approaches are applied, as noted in [46]. There are three types of learning algorithms:
Supervised, Unsupervised, and Reinforcement Learning.

• The objective of a supervised learning algorithm, which requires the assistance of a supervi-
sor, is to learn how to translate input data to output data using input data, with the supervisor
providing the precise values.

• The finding of symmetries between input data is the goal of an unsupervised learning method,
which only has input data.

• A hybrid of the first two types using both labeled and unlabeled data. Unsupervised learning
combined with Supervised generated from a portion of the labelled data.

• Algorithms that use reinforcement learning make choices depending on what must be done to
achieve the greatest results.

Regression and classification problems are solved using supervised learning algorithms. When cat-
egorizing unique data, the classification task is utilised, and when analyzing continuous data, the
regression job is employed, [46]. The approaches discussed in this part make use of wearable data in
conjunction with patient personal data, self-reported pain scales, and other data. Data used by a wear-
able device is kept in databases, cloud platforms, etc. Table 3.3. shows machine learning methods
along with their contributions for each article that is being discussed.

3.1. Decision tree (DC)

Decision Tree algorithms are indispensable in machine learning, offering a structured approach to
modeling decisions and their outcomes. Figure 3.1 illustrates the structure of a Decision Tree, show-
ing how by segmenting a dataset into smaller, more uniform subsets and forming a corresponding
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decision tree, these algorithms provide a clear, interpretable framework for decision-making. Each
node in this tree, as depicted in Figure 3.1, represents a data attribute test, guiding the categoriza-
tion process through branches that denote potential attribute values, from the root node down [45].
The decision nodes within the tree are crucial points where data is divided based on specific criteria,
leading to various branches, while the leaf nodes are the endpoints providing the final classification
or decision without further subdivision [47]. This method is particularly effective in areas like med-
ical diagnostics, where inductive inference plays a crucial role in identifying issues. While Decision
Trees are lauded for their simplicity, ability to handle both numerical and categorical data, and their
applicability to both regression and classification problems within a supervised learning framework,
they are not without challenges, such as susceptibility to overfitting in complex scenarios. However,
by leveraging metrics like entropy and information gain for optimal data splitting at each node, these
algorithms ensure the model’s efficacy in predicting new outcomes. Their versatility in handling
different types of data and the structured approach to predictive modeling highlights their value in
applications ranging from medical diagnostics to customer segmentation, situating Decision Trees
firmly within the domain of supervised learning due to their reliance on labeled datasets for train-
ing. The blend of theoretical robustness and practical utility, as demonstrated by Figure 3.1, makes
Decision Trees a cornerstone of the machine learning domain, widely recognized for their ease of
understanding and implementation [47].

Root Node

Decision Node Decision Node

Decision NodeLeaf Node

Sub-Tree

Leaf Node Leaf Node

Leaf Node Leaf Node

Figure 3.1. Decision Tree.

Regression modeling instead of classification is used in the decision tree approach for the
detection of dyspnea disease because the prediction dyspnea score can be continually quantified [14].
To overcome the limitations of the available data, k-fold cross-validation is employed [45]. This
technique allows for the assessment of the generalization ability of the model on unseen data and the
evaluation of the model’s stability on unseen participants using the leave-one-participant-out cross-
validation and test on the remaining folds. The complete training set is partitioned into a training
and test dataset for k-fold cross-validation, with each fold serving once as the test set. The process
is repeated k times. This methodology facilitates the identification of crucial features in various
respiratory metrics [14].

29



The disease is diagnosed by supervised learning and the classifier is trained using informa-
tion from the patient’s temperature profile. Parallel programming was utilized in the past to process
the data and promptly provide them to the user. Each patient under monitoring had clinical informa-
tion on his family history, device trials, biopsy results, and temperature profile collected. To select the
best machine learning (ML) approach, several techniques such as Decision Trees (DT), Support Vec-
tor Machines (SVM), Random Forests (RF), and Back Propagation Neural Networks are used, and
the one that achieves the highest accuracy is chosen based on the data obtained. If the data collected
is limited in size, k-fold cross-validation is used to ensure the reliability of the results [33].

Several ML models were used to obtain the highest accuracy while collecting data for the
walking activity recognition model (WARM) using wearable motion sensors in [38]. In common
machine learning classification methods, the moving average and moving standard deviation versions
of these gathered data were employed. While keeping the detection prevalence at the same level as
the prevalence of walking activities in the data, Decision Tree was able to achieve a precision of 88%
on the training set and 77% on the test set. The periods of walking and non-walking exercise were
previously divided by the authors. They took advantage of information on hip rotation and wearable
sensors with limited memory and processing capability that stored real-time activity.

In [40] is details the utilization of triboelectric respiratory sensors integrated into a commer-
cial mask for the measurement of respiratory events. Data were collected for five typical respiratory
behaviours: normal breathing, deep breathing, coughing, sneezing, and laughing. A thorough analysis
and feature extraction were performed for each of these behaviours from the collected signals. Twelve
features were extracted, including average values, variance, standard deviation, root mean square, and
kurtosis from the original signal in the time domain; as well as pulse factor, waveform factor, peak
factor, and skewness from the time-frequency domain, along with the unbiased estimated coefficient
of variation and edge factor from the frequency domain. Based on these extracted features, a Decision
Tree (DT) was employed to develop a classification model that enhances the accuracy of recognizing
respiratory behaviours. The algorithm can successfully classify different types of respiratory signals
with an average accuracy of 97.2%.

3.2. Random forest (RF)

The Random Forest algorithm, stands as a paradigm-shifting approach in machine learning for tack-
ling both classification and regression challenges for supervised learning [48]. It operates by con-
structing an ensemble of decision trees, each depending on values drawn from a random vector,
ensuring diversity and robustness across the model. This methodology not only converges the gen-
eralization error to a limit as the forest grows but also balances the strength and correlation of in-
dividual trees to enhance prediction accuracy. Random Forests’ adaptability to a wide array of data
types, their competency in managing both numerical and categorical variables, and their interpretabil-
ity contribute significantly to their widespread application [49]. Notably, Random Forests excels by
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having each tree vote for a class in classification tasks or average predictions for regression, effec-
tively handling high-dimensional data with minimal tuning. The internal mechanisms, such as vari-
able importance metrics and feature selection for node splitting, provide deep insights into the data’s
structure, affirming the algorithm’s capacity to mitigate overfitting despite dataset complexity. The
blend of theoretical robustness and practical utility cements Random Forests as an indispensable tool
in predictive modeling, particularly valuable in scenarios with noisy or incomplete data. In essence,
Random Forests have revolutionized machine learning by integrating multiple decision trees to ad-
dress classification and regression problems, offering a versatile and powerful toolkit that adapts to
diverse learning tasks. Their method of leveraging randomized decision trees and aggregating pre-
dictions showcases an unparalleled ability to navigate through high-dimensional spaces and predict
outcomes accurately, underscoring their critical role in advancing the field of machine learning [50].

Random Forest (RF) outperformed the Decision Tree (DT) in detecting dyspnea disorders,
as observed from the data obtained through wearable sensors from patients and patient self-reports (as
shown in Table 3.3). Heart rate and respiration data from wearable BIOPAC devices were collected
and analyzed for this purpose [14]. RF algorithms were used on the acquired data in order to identify a
link between measurement findings and the patient’s self-reported pain experience. The RF classifier
in [33] is one of the strategies used to diagnose breast cancer using Wearable Biometric Patches. A
random forest method was used to estimate the level of hydration (HL) using Galvanic skin response
(GSR) data obtained with EDA sensors.

The study by [34] used k-fold cross-validation with the collected data being used for both
training and testing. They used the random forest classification algorithm to predict patients’ car-
diovascular risk, which incorporated input from patient lifestyle interviews and data from wearable
sensors. Similarly, in [15], k-fold cross-validation was employed, and the results were validated with
one participant left out. In another study [37], RF regression was applied to analyse data from a
wearable Empatica E4 device to predict blood sugar levels. A non-invasive wearable device facili-
tates real-time monitoring of sweat electrolytes during physical activity, enabling the analysis of their
relationship with the core body temperature. The designed device has been tested and compared
with the commercially available HORIBA-LAQUAtwin device. The RF (Random Forest) regression
algorithm has proven to be an effective indicator in predicting body temperature based on the mea-
surements of sodium and potassium in sweat, with a Root Mean Square Error (RMSE) of 0.02 ◦C
[41].

3.3. k-Nearest Neighbor (kNN)

The k-Nearest Neighbor (kNN) algorithm is a straightforward and widely used machine learning
method for classification and regression, especially useful when the data distribution is unknown [51].
This "instance-based" and "lazy learning" approach relies on storing training examples and calculat-
ing distances between samples to categorize new instances based on the majority vote of their nearest
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neighbors. The simplicity of kNN, a non-parametric model, lies in its reliance on the Euclidean dis-
tance for determining closeness without making assumptions about the underlying data distribution
[45]. Choosing the right ’k’ value is critical for kNN’s effectiveness, influencing accuracy and re-
quiring experimentation for optimization. Despite its benefits, including ease of implementation and
adaptability, kNN faces challenges such as high computational demands and substantial storage needs,
as it retains the entire dataset for making predictions. Several variants of kNN have been developed
to improve its performance and efficiency, addressing its inherent weaknesses. These include locally
adaptive kNN, which optimizes ’k’ based on the local neighborhood, and weighted kNN, where at-
tributes are assigned different weights to influence classification. Integration’s with other algorithms,
like k-means, have also been explored to reduce computational load and improve accuracy. kNN’s
application extends across various fields, including healthcare for predicting medical outcomes like
cardiac risks and financial modeling for stock market analysis. Its ability to handle nonlinear data
makes it particularly useful in these domains. However, compared to other algorithms like SVM or
logistic regression, kNN can be computationally slower and less efficient with very large datasets. De-
spite these limitations, kNN’s flexibility and the development of improved variants continue to make
it a valuable tool in the machine learning toolkit, driving ongoing research to enhance its performance
further [52]. The Figure 3.2 represents a simple example of the kNN algorithm described.

Figure 3.2. k-Nearest Neighbor algorithm [53].

The work posture stability is one of the crucial parameters during some activities. MVN
Link - Xsens wearable devices try to detect stable and unstable postures in six different positions.
After collecting raw data from the wearable device, processing data using different feature selections
and extraction: mean, range, variance, standard deviation, root mean squared, skewness, kurtosis,
and the first five fast Fourier Transformation (FFT). For classification selection, models training is
used besides k-Nearest Neighbor (kNN) also Gaussian Naive Bayes (GNB), Kernel Naive Bayes
(KNB), Logistic Regression (LR), Discriminant Analysis (DA), Support Vector Machine (SVM),
Decision Tree (DT), Bagged Trees (BT) and Optimizable Ensemble (OE) classification. To assess the
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classification performance of machine learning models, k-fold cross-validation with a value of k equal
to 5 was employed. By processing data derived from the centre of pressure in the anterior-posterior
direction, an accuracy of 91.6% was achieved using the Optimizable Ensemble approach with SC1
and FS1 data sets. For PPS - perception of postural studies 87.4% accuracy was achieved with KNN
based on data SC1 + FS1. And only on Pelvis ACC data 90.5% accuracy using FS1 + OE. In [39] the
authors try to investigate the abilities of ACC-based measurement to assess the stability of working
posture, to detect the effects of work-related factors, and the ability to classify stable and unstable
working postures.

3.4. Support vector machine (SVM)

Support Vector Machine (SVM) is a significant algorithm in machine learning, heralded for its ro-
bustness in classification, pattern detection, and prediction tasks [46]. Central to SVM’s efficacy is
its foundation in statistical learning theory, particularly the concept of Structural Risk Minimization
(SRM) which contrasts with the Empirical Risk Minimization (ERM) principle utilized by conven-
tional neural networks. SRM’s focus on minimizing an upper bound on expected risk equips SVM
with superior generalization capabilities. Initially designed for classification, SVM’s application has
been adeptly extended to regression.

Consider an example of data clusters in Figure 3.3, where a hyperplane is meticulously
drawn to segregate the two clusters effectively, thus maximizing the margin width between them. This
task of finding the optimum location for the hyperplane, which is central to achieving the maximal
margin width, is recognized as a complex optimization challenge. Crucially, the points that lie in
close proximity to the margin, known as support vectors, are instrumental in determining the precise
orientation of the hyperplane. These support vectors underscore the delicate balance required in the
spatial arrangement that dictates the separation between differing data clusters.

Figure 3.3. Support Vector Machine [54].
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Building upon this foundational concept, the algorithm forges ahead by constructing a
model through the identification of an optimal separating hyperplane. This hyperplane not only
maximizes the margin between diverse classes for classification endeavors but is also adept at fit-
ting a function within a predetermined threshold for regression challenges. The intrinsic strength
of the SVM algorithm is illuminated by its proficiency in managing linearly inseparable data. This
is achieved through the utilization of kernel functions, which empower the algorithm to navigate a
high-dimensional feature space where linear separability becomes attainable. Such a technique not
only broadens SVM’s applicability across a vast array of problems but also enhances computational
efficiency. This is because it enables operations to be conducted within the input space, rather than
necessitating navigation through the more complex high-dimensional feature space as described [55].

Despite the algorithm’s reliance on the comprehensive training dataset a factor that intro-
duces challenges related to computational demands and data storage SVM’s utility as a tool in the
machine learning arsenal is undisputed. Its versatility, anchored in the Structural Risk Minimiza-
tion (SRM) principle and the strategic implementation of kernel functions, highlights its critical role
across multiple domains. These range from healthcare to financial modeling, among others. As the
field of machine learning continues to evolve, the significance of SVM is further cemented, fueled
by relentless research endeavors aimed at optimizing its functionality and broadening its spectrum of
application.

Using the SVM classifier, it is possible to predict hip discomfort in patients who use the
wearable MindWave Mobile II (Neurosky) device. The obtained statistics were combined with data
from a patient’s self-reported numerical rating scale (NRS), [32]. The kernel is used by SVM to do
nonlinear mapping, which allows for the correlation of data. In this instance, the SVM technique is
utilised to estimate the severity of patients’ hip pain using the Gaussian Radial basis function (RBF)
kernel [46].

The wearable device was placed on the heads of the patients for 7-10 minutes and data was
gathered from EEG/ECG sensors with a frequency range of 0 to 40 Hz. Using the SVM method,
the accuracy of all pain levels identified using wearable devices mounted on a head and combined
with NRS was 79.6%. According to the author, this approach may be used to identify disorders in
people of both sexes and is a suitable way to objectively and non-invasively monitor patients suffering
[32]. According to a study [35], it is suggested to use a SVM as a machine learning technique to
analyze data collected from wearable technology. The study recommends using SVM classification or
regression to evaluate vital sign data collected from wearable devices that monitor pregnant women’s
heart rate, temperature, blood glucose, and uterine contraction, to predict the risk of stillbirth, preterm
birth, or miscarriage [36].
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3.5. Convolutional Neural Networks (CNN)

Convolutional Neural Networks (CNNs) stand as a crucial technology in deep learning, excelling in
fields like visual and speech recognition, and language processing. Born from insights into biological
vision, CNNs use multi-layer architectures to intricately process data, evolving from early concepts
like recognition to sophisticated models capable of complex pattern recognition with minimal pre-
processing [6]. The architecture of CNNs comprises of input layer like raw datasets, convolutional
layers for feature extraction, pooling layers for reducing data size while maintaining essential infor-
mation, and fully-connected layers for high-level analysis, leading to an output layer, often employing
softmax for classification 3.4.

Figure 3.4. Convolutional Neural Network architecture [56].

Innovations such as inception modules have allowed CNNs to analyze data at various scales,
with methods like batch normalization and improved optimization techniques enabling deeper, more
precise networks. Additionally, CNNs have seen advancements in computational efficiency and model
simplification, allowing for broader deployment across diverse hardware. Their automatic feature
extraction capabilities have made them invaluable across numerous applications, transforming indus-
tries by enhancing the accuracy and efficiency of data analysis. Related to that, wearable sensors
for health monitoring employ CNNs alongside other machine learning strategies to predict medical
conditions such as epilepsy seizures and diagnose diseases like breast cancer. These devices measure
vital parameters through sensors, with CNNs processing this data to achieve high diagnostic accuracy,
demonstrating the significant impact of machine learning in enhancing health diagnostics [57].

Furthermore, this approach utilizes wearable sensors that can detect EDA, PPG, blood vol-
ume pulse, accelerometry, and skin temperature to predict epilepsy seizures. The Back Propagation
Neural Network (BPNN) is a type of neural network that propagates information from the gradient
to the inputs of the previous model in reverse, as described in [58]. This technique is combined with
a decision tree, a support vector machine, and a random forest for the diagnosis of breast cancer
[33]. Utilizing photoplethysmographic sensors (PPG), continuous and non-invasive monitoring of
cardiorespiratory parameters can be performed by capturing blood volume variations in body organs,
as described in [42]. The data were processed using deep learning, namely through Convolutional
Neural Networks (CNN), employing both one-dimensional (1D) and two-dimensional (2D) CNN ar-
chitectures. In this context, the 1D CNN model achieved a maximum accuracy of 96.71%. Data
processing through Machine Learning techniques enhances the accuracy of diagnostic information
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obtained from wearable devices.

3.6. Long Short-Term Memory (LSTM)

Long Short-Term Memory (LSTM) networks, a type of recurrent neural network, excel at learning
from sequences of data, making them ideal for predicting future events. Their design addresses the
vanishing and exploding gradient problems typical in traditional recurrent neural networks, allowing
them to capture long-term dependencies in data sequences effectively. By integrating memory cells
that regulate the flow of information, LSTMs can remember inputs over long intervals, enabling pre-
cise predictions in diverse applications such as stock market trends, weather forecasting, and natural
language processing, as described in [59]. At the heart of LSTM’s architecture are structures known
as memory cells, which contain gates that control the flow of information. These gates - the input,
output, and forget gates - decide what information is stored, outputted, or discarded, ensuring that the
network maintains relevant information over long periods. This selective memory capability allows
LSTMs to learn patterns and sequences, making them highly adept at tasks that require the prediction
of future events based on historical data.

LSTMs are particularly useful in scenarios where the sequence and timing of data points
are critical. For example, in financial modeling, LSTMs can analyze historical stock prices to fore-
cast future trends. In weather prediction, they can process sequences of atmospheric data to predict
future weather conditions. Their ability to process and remember long sequences of data also makes
them effective in natural language processing tasks, such as predicting the next word in a sentence or
translating text from one language to another. The effectiveness of LSTMs in predicting future events
lies in their deep learning capabilities, allowing them to identify and learn patterns in vast amounts of
data. By processing data sequences with LSTMs, organizations and researchers can uncover insights
and make informed predictions, driving advancements across various fields. As deep learning tech-
nology continues to evolve, LSTMs will remain a crucial tool in the arsenal of methods for analyzing
sequential data and forecasting future events.

The study developed a method for the continuous monitoring of arterial blood pressure
(ABP) using non-invasive and cuffless techniques, specifically through the analysis of photoplethys-
mogram (PPG) and electrocardiogram (ECG) signals, as presented in [60]. By applying deep learn-
ing, particularly convolutional neural networks (CNN) such as ResNet and WaveNet, and recurrent
neural networks (RNN) including Long Short-Term Memory (LSTM) models, the research aims at
accurately predicting ABP. Optimal results were achieved using ResNet followed by three LSTM
layers, achieving a mean absolute error (MAE) of 4.118 mmHg for systolic and 2.228 mmHg for di-
astolic blood pressure, indicating the method’s high precision in accordance with American national
standards. This research highlights the potential of deep learning in enhancing methodologies for
non-invasive monitoring of key cardiovascular parameters.
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The stress levels in video game players can be assessed by utilizing wearable sensors [43].
By processing such data through deep neural networks, the stress levels of players can be evaluated.
The collected data include ECG (Electrocardiogram), EMG (Electromyogram), and EDA (Electroder-
mal Activity). The LSTM (Long Short-Term Memory) model has proven to be an effective tool for
accurately predicting stress with a 92% accuracy rate, highlighting a promising platform for further
research.

Through the analysis described in [44], it is possible to detect diabetes. Using non-invasive
accelerometer sensors placed on the hip, ankles, and knee, data are collected and stored raw in
a database. These are then processed using deep learning methods CNN-LSTM, combining the
strengths of CNN for feature extraction and LSTM for classification based on temporal information.
The classification of diabetes using acceleration data achieves an accuracy of 91.25%, representing
an improvement over existing methods.
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Table 3.1. Review of used machine learning algorithms.

Ref. ML
technique Accuracy Contribution

[14] DT, RF 87%

A DT regressor model is developed and chosen for its
ability to handle nonlinear relationships and dominant

feature selection. The study shows the potential of using
sensors and ML algorithms to assess dyspnea in patients

and significantly for patients who cannot report
themselves, by obtaining multiple factors with different

importance weighting.

[6] CNN /

Use of machine learning and wearable technology to
predict seizures in individuals with epilepsy, by using
historical trends from self-reported seizure diaries and

multiple sources of information.

[35] SVM 91.4%

The RPRM system remotely monitors pregnant women to
detect abnormalities and prevent potential health risks

during pregnancy, and can be enhanced using more
efficient ML algorithms and GPS sensors to monitor

multiple patients in a specific area.

[32] SVM 79.6%

The proposed system uses a wearable device with a single
electrode and machine learning to objectively evaluate pain
during ADL, and could be a useful tool for characterizing
patients’ pain, determining the need for operative therapy,

and monitoring the effects of pain treatment.

[15] RF 80%

The random forest algorithm achieved the best
performance for classifying patients into cardiovascular
risk classes. The study used patient interview data and

biosignal data, processed to extract 35 features, to
determine cardiovascular risk, and concluded that further

investigations are needed for developing a soft sensor.

[33]
DT, SVM,
RF, BPNN

78%

The Cyrcadia Breast Monitor (CBM) captures temperature
data from both breasts and has demonstrated an accuracy

of 78% in predicting breast lesions. The CBM uses
temperature profiles collected from 16 sensors that may

detect cancer earlier than mammography.

[34] RF 91.3%

RF algorithm achieved the best performance among the
eight supervised classifiers used in the study to predict skin
hydration levels based on GSR data, which can be useful in

medical and healthcare settings.

[37] RF 91% - 100%

Using self-reported data and data from the non-invasive
wearable device for seizure forecasting in people with
epilepsy can contribute to accurate seizure forecasts
incorporated with a Machine Learning algorithm.
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Table 3.2. Review of used machine learning algorithms.

Ref. ML
technique Accuracy Contribution

[38] DT 88%

Walking activity recognition model (WARM) has been
recorded using wearable sensor in real life conditions.
Data were collected using a motion sensor with low
computing and memory resources that measures the

rotation of the hip.

[39] kNN 87.4%

Five measures are suggested to improve the assessment of
postural stability at work. ACC offers the capacity to

evaluate the stability of work postures. The feature set (FS)
machine learning approach was used, and it produced

greater accuracy.

[40] DT 97.2%

Gathering data via a non-invasive, wearable sensor
integrated into a mask enables the effective and dependable
continuous real-time observation of respiratory functions,

aiding in the early identification and prevention of
respiratory illnesses.

[41] RF 0,02◦C (RMSE)

By employing machine learning for the analysis of this
data, it is feasible to predict core body temperature,

representing a significant advancement in the monitoring
and management of hydration and the overall health status

of individuals in real-time.

[42] CNN 96.71%
Enhancement of diagnostic methods for information

obtained via PPG sensors regarding the reliability of heart
rate (HR) and heart rate variability (HRV) assessment.

[60] LSTM

4.118 mmHg
(systolic), 2.228

mmHg (diastolic)
(MAE)

Continuous and non-invasive monitoring of arterial blood
pressure is achievable through the application of deep

learning, utilizing ResNet and LSTM models. The high
precision of these predictions, aligned with national
standards, demonstrates a significant potential for

advancements in monitoring and managing cardiovascular
health, emphasizing the effectiveness of these techniques.

[43] LSTM 92%

A real-time automated stress monitoring system for young
gamers could help prevent stress-related issues. Leveraging

deep learning to analyze physiological signals enhances
our ability to manage emotional states in contexts ranging
from gaming to human-machine interactions, highlighting
artificial intelligence’s growing role in health and therapy.

[44]
CNN,
LSTM

91.25%

Diabetes detection using gait analysis, by combining
advanced machine learning techniques and data collected

through wearable sensors, can enhance diabetes
diagnostics, offering potential for early detection and

reducing the need for invasive testing.
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Table 3.3. Review of used machine learning algorithms.

Ref. ML
technique Accuracy Contribution

[38] DT 88%

Walking activity recognition model (WARM) has been
recorded using wearable sensor in real life conditions.
Data were collected using a motion sensor with low
computing and memory resources that measures the

rotation of the hip.
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4. Conclusion

This comprehensive analysis delves into the integration of wearable technology with machine learn-
ing, showcasing a notable transformation in health monitoring aimed at substantially enhancing pa-
tient care and the precision of medical diagnostics. The research examines radio technologies utilized
for data transmission across various distances, which can be integrated within wearable devices. It
also reviews the wearable non-invasive devices themselves, which have the potential for use in diag-
nosing patient conditions at home.

Data collected through wearable devices are stored using chosen radio technologies in a
database, where the gathered data, combined with the deployment of sophisticated machine learning
models such as Decision Trees, Random Forests, k-Nearest Neighbors, Support Vector Machines,
Convolutional Neural Networks, and Long Short-Term Memory networks, can be used for detecting
and early diagnosis of various illnesses.

The paper conducts a case study on Bluetooth Low Energy (BLE) and LoRaWAN (Long
Range Wide Area Network) radio technologies, which have potential applications in wearable de-
vices. Their range and performance for use in both urban and rural environments were tested. Ad-
ditionally, these technologies pave the way for real-time, continuous health monitoring, marking the
advent of a new era in medical care and patient management.

Moreover, the paper provides insights into machine learning techniques for analyzing and
interpreting the medical data produced by wearable devices. These techniques stand as a foundational
element in diagnosing diseases, forecasting health issues, and enabling timely medical interventions.
The combination of state-of-the-art technology and advanced analysis aimed at enhancing diagnostic
processes allows for early disease detection and encourages a preventative approach to healthcare
management. Additionally, the intelligent use of these technologies greatly reduces the necessity for
traditional diagnostic methods, alleviating pressure on healthcare resources and promoting a more
streamlined, effective care delivery.

This comprehensive research lays the groundwork for an upcoming shift in health monitor-
ing, where smart integration of wearable technology and machine learning not only improves patient
outcomes but also transforms the healthcare landscape. This approach increases diagnostic precision,
supports personalized treatment strategies, and leads to a new age of improved medical accuracy,
patient-focused care, and the overall health of the global population.
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With the rapid advancement of technology, not only are technology-driven healthcare so-
lutions becoming predominant, but there is also an emphasized imperative for continuous research
and innovation in this dynamic field. The path forward in integrations and innovations, and most
importantly, commitment, is directed towards enhancing the lives of patients globally.
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Labels:

IoT Internet of Things
ML Machine Learning
PPG Photoplethysmography
EMG Electromyography
EEG Electroencephalography
ECG Electrocardiography
EDA Electrodermal activity
SAREF The Smart Applications REFerence
SAREF4EHAW
RFID Radio Frequency Identification
LF Low-Frequency
HF High-Frequency
UHF Ultra-High-Frequency
LPWAN Low PowerWide Area Networks
FHSS Frequency-hopping spread spectrum
BLE Bluetooth Low Energy
LoRaWAN Long Range Wide Area Network
WPAN Wireless Personal Area Network
Wi-Fi Wireless Ethernet
RF Radio Frequencies
NB-IoT Narrowband Internet of Things
MTC Machine Type Communication
LTE Long-Term Evolution
LoRa Long Range
CRC Cyclic redundancy check
MAC Media Access Control
RSSI Received Signal Strength Indicator
CDF Cumulative Distribution Function
SF Spreading Factor
BW Bandwidth
TTN (The Things Network
ETSI European Telecommunications Standards Institute
LPWA Low Power Wide Area
ISM Information Security Management
MIC Message Integrity Code
NwkSKey Network Session Key
AppSKey Application Session Key
CTR Counter mode
FHDR Frame header
FCnt Frame Counter
GPS Global Positioning System
USB Universal Serial Bus
ACC Acceleration
GYR Gyroscope
WBP Wearable Biometric Patches
GSR Galvanic Skin Response
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LUX Large Underground Xenon
BTN Button
HR Heart Rate
NA Sodium
K Potassium
PE/PP Polyethylene/Polypropylene
SVM Support Vector Machine
RF Random Forest
WARM Walking Activity Recognition Model
RMSE Root Mean Square Error
FFT Fast Fourier Transformation
GNB Gaussian Naive Bayes
KNB Kernel Naive Bayes
LR Logistic Regression
DA Discriminant Analysis
BT Bagged Trees
OE Optimizable Ensemble
ERM Empirical Risk Minimization
NRS Numerical Rating Scale
RBF Gaussian Radial basis function
HL Level of Hydration
k- NN k- Nearest Neighbour
RNN Recurrent Neural Networks
MAE Mean Absolute Error
CNN Convolutional Neural Networks
BPNN Back Propagation Neural Network
CBM Cyrcadia Breast Monitor
FS Feature Set
SRM Structural Risk Minimization
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WEARABLES AND MACHINE LEARNING IN HEALTH MONITORING

Abstract:

The integration of wearable technology and machine learning into health monitoring systems repre-
sents a pivotal advancement in the improvement of patient care and diagnostic accuracy. This paper
elaborates on the utilization of wearable devices that measure various vital parameters and distribute
the data to a designated storage database using Bluetooth Low Energy (BLE) and Long Range (Lo-
RaWAN) technologies. Coupled with a range of machine learning models, including Decision Trees,
Random Forests, k-Nearest Neighbors, Support Vector Machines, Convolutional Neural Networks,
and Long Short-Term Memory networks, this technology facilitates the prediction and early detec-
tion of various diseases. Through comprehensive case studies, this research assesses the precision of
wearable devices in measuring and transmitting essential health parameters, emphasizing their appli-
cability in healthcare environments. The study underscores the transformative potential of machine
learning algorithms in processing data from wearable devices, showcasing their efficiency in disease
diagnosis, health issue prediction, and enabling timely medical interventions. This research estab-
lishes a foundation for a promising future where the confluence of wearable technology and machine
learning in healthcare could markedly improve patient monitoring, diagnosis, and treatment modali-
ties, thereby contributing significantly to the advancement of the healthcare industry.

Keywords:
IoT, Wearable devices, non-invasive, health, monitoring, machine learning, sensors, BLE, Bluetooth,
LoRaWAN.
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NOSIVI UREÐAJI I STROJNO UČENJE U PRAĆENJU ZDRAVLJA

Sažetak:

Integracija nosive tehnologije i strojnog učenja u sustave za praćenje zdravlja predstavlja ključan
napredak u poboljšanju skrbi za pacijente i točnosti dijagnostike. Kroz detaljnu analizu, ovaj rad
istražuje kako nosivi ured̄aji, mjereći različite vitalne parametre i distribuirajući prikupljene podatke
putem tehnologija poput Bluetooth Low Energy (BLE) i Long Range (LoRaWAN), omogućavaju
predvid̄anje i rano otkrivanje raznih bolesti. Ova revolucionarna kombinacija tehnologija otvara vrata
za kontinuirano i precizno praćenje zdravstvenog stanja pacijenata izvan tradicionalnih medicinskih
ustanova, naglašavajući važnost stalnog pristupa zdravstvenim informacijama za rano otkrivanje i
upravljanje zdravstvenim stanjima. Rastuća popularnost tehnologije Interneta stvari (IoT) dodatno
potiče inovacije u zdravstvenoj skrbi, čineći pametne tehnologije ključnim elementom u razvoju
rješenja za daljinsko praćenje pacijenata, poznato kao eHealth. Ova integracija ne samo da poboljšava
kvalitetu života pacijenata pružajući brze odgovore na zdravstvene izazove, već takod̄er omogućuje
medicinskim stručnjacima pristup važnim podacima u realnom vremenu, što je presudno za pravovre-
menu dijagnozu i intervenciju. S obzirom na izazove povezane s obradom i interpretacijom velikih
količina podataka koje generiraju nosivi ured̄aji, primjena modela strojnog učenja, uključujući drveta
odlučivanja, nasumične šume, k-najbliže susjede, strojeve potpornih vektora, konvolucijske neu-
ronske mreže i mreže dugoročne kratkotrajne memorije, postaje neizostavna. Ovi algoritmi su se
pokazali izuzetno učinkovitima u analizi podataka i otkrivanju uzoraka koji mogu ukazivati na poče-
tak bolesti, čime se omogućuje ranija intervencija i potencijalno spašavaju životi. Kroz sveobuhvatne
studije slučaja, ovaj rad daje pregled preciznosti i učinkovitosti nosivih ured̄aja i algoritama strojnog
učenja u kontekstu zdravstvene skrbi, naglašavajući njihovu sposobnost transformacije pristupa di-
jagnozi i liječenju. Integracija nosive tehnologije i strojnog učenja definira ključnu ulogu u napretku
zdravstvene industrije, u vidu poboljšanja praćenja pacijenata, dijagnostičke sposobnosti i terapijskih
metoda liječenja.

Ključne riječi:
internet stvari, nosivi ured̄aji, neinvazivni, zdravlje, praćenje, strojno učenje, senzori, BLE, Bluetooth,
LoRaWAN
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