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Stochastic-deterministic modelling of the thermal response of 

the human body exposed to high frequency radiation 

Abstract: 

New generation of communication systems require the use of a frequency band above 3 

GHz and below 6 GHz for fast data transmission over short distances with Line of Sight 

(LOS) and transmission with minimal refraction. One of the biggest obstacles for 

implementation of 5G systems from 2020. to 2025. is related to the potential effects of 

electromagnetic fields generated by 5G systems, but it is clear that the effects are thermal 

in nature. One of the simplest scenarios to assess the human exposure to high frequency 

radiation is the human body exposed to the field radiated by thin wire antennas. Even with 

the sophisticated new technologies coming along, a simple body model exposed to dipole 

antenna radiation is of interest for quick dosimetry procedures, aiming to get a rapid 

estimation of the phenomena.  

The analysis of the radiation of the vertical dipole antenna requires numerical solution of 

the Pocklington equation, and with a known current distribution along the wire, the 

radiated electric field, and other dosimetric quantities can be determined. This process is 

demanding in terms of computer memory and calculation time, which is a problem if we 

want a fast dosimetric procedure. 

The basic assumption of the doctoral thesis is that the application of the assumed current 

distribution along the vertical electric dipole antenna enables the determination of the 

values of E field close to the actual values. In this way, the numerical solution of 

Pocklington's integro-differential equation is avoided, thus reducing computer resources 

without significant loss of accuracy. Furthermore, the next assumption that enables the 

analytical solution of the radiated electric field is the use of the Fresnel refraction 

coefficient which is related to the first term in the asymptotic expansion of the 

Sommerfeld integrals, which additionally saves calculation time. 

For the second step, i.e. internal dosimetry, an assumption is made about the use of a 

simple human model (parallelepiped or cylinder) positioned in the far field zone. Taking 

into account the maximum value of the field on the surface of the parallelepiped or 

cylinder and the transmission coefficient resulting from the Modified Image Theory 

(MIT) approach, the corresponding dosimetric quantities of interest can be quickly 

determined. 

Finally, in the third step, the use of analytical methods enables a quick determination of 

the thermal response in parallelepiped human body model. Taking into account the 

maximum value of the field on the surface of the parallelepiped human body, a stationary 

solution of the Pennes’ equation for temperature increase is calculated, assuming a 
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constant amount of power density in the tissue and assuming that the power density 

exponentially decays with the tissue depth. A homogeneous single-layer and 3-layer 

geometry of parallelepiped human body is used.  

In fourth step stochastic-deterministic modelling of thermal response was performed. 

Stochastic-deterministic modelling takes into account the uncertainty of input parameters 

in thermal dosimetry analysis. In order to assess the influence of each of the input 

parameters (which become random variables) on the output variable of interest, a 

sensitivity analysis is performed. 

The described, fully analytically solvable and simple, stochastic-deterministic model 

consisting of a vertical dipole antenna of finite length and of a simple model of the human 

body significantly saves computer resources, so the model can be used for rapid dosimetry 

of human exposure to radiation from new communication systems in the lower part of the 

frequency range. 

 

Keywords: 

analytical approach, vertical electric dipole, half space, electric field, internal field 

dosimetry, specific absorption, simple body model, parallelepiped, cylinder, thermal field 

modelling, stochastic analysis, steady-state, uncertainty quantification, stochastic 

collocation; 
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Stohastičko-determinističko modeliranje toplinskog odziva 

ljudskog tijela izloženog zračenju visokih frekvencija 

Sažetak: 

Komunikacijski sustavi novih generacija zahtijevaju uporabu frekvencijskog pojasa ispod 

6 GHz i iznad 3 GHz za brzi prijenos podataka na kratkim udaljenostima uz postojanje 

linije vidljivosti (engl. Line of Sight, skraćeno LOS) i prenos s minimalnom refrakcijom. 

Jedna od najvećih prepreka za implementaciju 5G sustava od 2020. do 2025. odnosi se na 

potencijalne učinke EM polja koje generiraju 5G sustavi, ali je poznato da su oni u prirodi 

toplinski. Jedan od najjednostavnijih scenarija za procjenu izloženosti ljudi EM zračenju 

je ljudsko tijelo izloženo zračenju tankih žičanih antena. Čak i sa sofisticiranim novim 

tehnologijama koje dolaze, jednostavan model tijela izložen zračenju dipolne antene je 

zanimljiv za brze procjene i jednostavnije postupke dozimetrije.  

Analiza zračenja vertikalne dipol antene zahtijeva riješavanje Poklinkton-ove jednadžbe 

numerički, a zatim uz poznatu struju izračeno električno polje, i ostale dozimetrijske 

veličine također se određuju numeričkim metodama. Ovaj proces je zahtijevan u smislu 

memorije računala ali i vremena računanja, što predstavlja problem ako želimo brz 

dozimetrijski postupak. 

Temeljna pretpostavka doktorskog istraživanja je da primjena pretpostavljene raspodjele 

struje duž vertiklalno pozicionirane dipol antene omogućava određivanje izračenog E 

polja bliskog stvarnim vrijednostima. Na ovaj način izbjegava se numeričko rješavanje 

Pocklington-ove integro- diferencijalne jednadžbe, čime se smanjuju računarski resursi 

bez značajnog gubitka točnosti. Nadalje, sljedeća pretpostavka koja omogućuje analitičko 

rješenje izračenog električkog polja je upotreba Fresnel-ovog koeficijenata refleksije 

(engl. Fresnel Refraction Coefficient, skraćeno RCM) koja je povezana je s prvim članom 

u asimptotskoj ekspanziji Sommerfeld-ovih integrala, što dodatno štedi vrijeme 

računanja.  

Za drugi korak, odnosno unutarnju dozimetriju, uvodi se pretpostvka o upotrebi 

jednostavnog ljudskog modela (kvadra ili cilindra) pozicioniranog u zoni dalekog polja. 

Uzimajući u obzir maksimalnu vrijednost polja na površini kvadra ili cilindra i koeficijent 

prijenosa koji proizlazi iz MIT pristupa mogu se brzo odrediti odgovarajuće veličine od 

interesa.  

Konačno, u trećem koraku, upotreba analitičkih metoda omogućava brzo određivanje 

toplinskog odziva. Uzimajući u obzir maksimalnu vrijednost polja na površini kvadra, 

traži se stacionarno rješenje Pennesove jednadžbe za temperaturni prirast pretpostavljajući 

konstantan iznos gustoće snage te pretpostavljajući da gustoća snage eksponencijalno 

opada po dubini tkiva. Za toplinski model koristi se homogeni i višeslojni kvadar.  
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U četvrtom koraku proveden je postupak stohastičkog modeliranja toplinskog odziva. 

Njime se uzima u obzir nesigurnost ulaznih parametara u analizi toplinske dozimetrije. U 

svrhu procjene utjecaja svakog od ulaznih parametara (koji postaju slučajne varijable) na 

izlaznu veličinu od interesa provodi se analiza osjetljivosti. 

Opisani, u potpunosti analitički riješiv i jednostavan, stohastičko-deterministički model 

koji se sastoji od dipol antene konačne duljine jednostavnog modela ljudskog tijela, 

značajno štedi računalne resurse, pa model može poslužiti za brzu dozimetriju izloženosti 

ljudi zračenju novih komunikacijskih sustava u nižem dijelu frekvencijskog raspona. 

 

Ključne riječi: 

analitički pristup, vertikalna dipolna antena, poluprostor, električno polje, dozimetrija 

unutarnjeg polja, specifična apsorpcija, jednostavni modeli tijela, paralelopiped, cilindar, 

modeliranje toplinskog polja, stohastička analiza, stacionarno stanje, kvantifikacija 

nesigurnosti, stohastička kolokacija; 

 



VI 

Acknowledgments 

First, foremost, and forever, thanks God Almighty. Thanks for blessing me much more 

than I deserve, thanks for everything. 

 

Professor Dragan Poljak, thank you for this extraordinary trip. You have enriched my 

life with beautiful human and professional values. I can't thank you enough! 

 

Many thanks go to co-authors of papers Professor Vicko Dorić.  

Professor Dorić, it was honour to work with you. 

 

I would like to thank prof. Zoran Blažević, Zvonimir Šipuš, Maja Škiljo, and Mario 

Cvetković, and– not only for their time and patience, but for their intellectual contributions 

to my development as a scientist. I consider Your feedback as valuable input for future 

work. 

 

 

 

 

To my Family,  

Mama i babo hvala Vam što ste baš vi moji roditelji. 

Mirza, ponosna sam na naše partnertsvo. Hvala ti što si tu. 

Enzo, hvala ti na ljubavi i prijateljstvu. 

 

 

 

 



VII 

 

 

 

 

 

 

 

 

 

 

 

„Nothing in this world is to be feared … only understood. “ 

Marie Curie 

 

“He who has led you so far will guide you further.” 

Rumi 

 



VIII 

Contents 

Introduction ................................................................................................................................ 3 

1.1 Motivation ................................................................................................................... 3 

1.2 Scientific method and contribution .............................................................................. 5 

1.3 Thesis outline ............................................................................................................... 8 

Interaction of high frequency fields with living material ......................................................... 10 

2.1 Interaction mechanisms ............................................................................................. 10 

2.2 Biological effects ....................................................................................................... 12 

2.3 Safety guidelines ........................................................................................................ 13 

2.4 Dosimetry – general aspects ...................................................................................... 15 

Incident dosimetry methods for simple wire antennas ............................................................. 17 

3.1 Vertical Electric Dipole ............................................................................................. 17 

3.2 Incident dosimetry for Vertical Electric Dipole ........................................................ 21 

3.2.1 Literature review ................................................................................................ 21 

3.3 Incident dosimetry – Analytical procedures .............................................................. 25 

3.4 Results for current distribution and irradiated field ................................................... 30 

3.5 Chapter summary ....................................................................................................... 46 

Internal electromagnetic dosimetry for canonical body models .............................................. 47 

4.1. Coupling between external and internal fields .......................................................... 47 

4.2 Theoretical dosimetry basics ..................................................................................... 48 

 4.2.1 Literature review ....................................................................................... 51 

4.3 Approach to internal electromagnetic dosimetry ......................................................... 53 

 4.3.1 Experimental and numerical approach ...................................................... 53 

 4.3.2 Analytical approach to internal electromagnetic dosimetry ...................... 54 

4.5 Chapter Summary ...................................................................................................... 72 

Thermal dosimetry procedures for canonical tissue representation ..................................... 73 

5.1 Modelling of the heat transfer phenomena in biological tissue ................................. 73 

5.2 Solving the Pennes’ Bio-Heat transfer equation ........................................................ 78 

 5.2.1 Numerical methods in thermal dosimetry............................................................ 79 

 5.2.2 Hybrid methods in thermal dosimetry ................................................................. 81 

 5.2.3 Analytical methods in thermal dosimetry ............................................................ 82 

5.3 Thermal dosimetry - Analytical procedure ................................................................ 85 

5.4 Results for temperature increase in tissue ................................................................. 96 

5.5 Chapter summary ..................................................................................................... 104 

Stochastic modelling in thermal dosimetry ............................................................................ 106 

6.1 Stochastic modelling in computational electromagnetics ....................................... 106 

6.2 An outline of Stochastic Collocation method for uncertainty propagation ............. 108 

6.3 Sensitivity Analysis ................................................................................................. 113 

6.4 Results in Stochastic-Deterministic Modelling ....................................................... 115 

 6.4.1 Results for Single-layer tissue ................................................................. 115 

 6.4.2 Results for 3-layer tissue model .............................................................. 118 



IX 

6.5 Chapter Summary .................................................................................................... 125 

Concluding Remarks .............................................................................................................. 127 

References .............................................................................................................................. 130 

APPENDIX A ............................................................................................................................ 140 

Appendix B ............................................................................................................................ 141 

APPENDIX C ............................................................................................................................ 143 

APPENDIX D ............................................................................................................................ 144 

APPENDIX E ............................................................................................................................ 146 

APPENDIX F ............................................................................................................................. 149 

 



X 

List of Figures 

Figure 2.1 EMF effects vs frequency 10 

Figure 2.2 Quantities in the guidelines: BCs on the internal dose and RLs for the 

external exposure 
11 

Figure 3.1 VED antenna above a lossy half space at height h 16 

Figure 3.2 Fresnel approximation in far field zone 25 

Figure 3.3 Current distribution on a VED above a lossy half-space at h=20m, maximum 

current in the center of the antenna I0=1 A, physical length L=0.01 m, and f=3 GHz 
29 

Figure 3.4 The absolute value of the electric field radiated in the air versus point 

location in the z-axis for a fixed distance from the source in an x horizontal direction 

x=200 m, frequency f=3 GHz, L/λ=1/4, and at antenna height h=1 m above ground 

30 

The absolute value of the electric field radiated in the air versus point location in the z-

axis for a fixed distance from the source in an x horizontal direction x=200 m, 

frequency f=3 GHz, L/λ=1/4, and at antenna height h=10 m above ground 

30 

Figure 3.6 The absolute value of the electric field radiated in the air versus point 

location in the z-axis for a fixed distance from the source in an x horizontal direction 

x=200 m, frequency f=3 GHz, L/λ=1/4, and at antenna height h=20 m above ground 

31 

Figure 3.7 The absolute value of the electric field radiated in the air versus point 

location in the z-axis for a fixed distance from the source in an x horizontal direction 

x=200 m, frequency f=3 GHz, at antenna height h=20 m above ground, and L/λ=1/4 

32 

Figure 3.8 The absolute value of the electric field radiated in the air versus point 

location in the z-axis for a fixed distance from the source in an x horizontal direction 

x=200 m, frequency f=3 GHz, at antenna height h=20 m above ground, and L/λ=1/2 

32 

Figure 3.1 The absolute value of the electric field radiated in the air versus point 

location in the z-axis for a fixed distance from the source in an x horizontal direction 

x=200 m, f=3 GHz, at antenna height h=10 m above ground, 𝐿/𝜆 = 1/10, and 

sinusoidal current distribution 

33 

Figure 3.10 The absolute value of the electric field radiated in the air versus point 

location in the z-axis for a fixed distance from the source in an x horizontal direction 

x=200 m, f=3 GHZ, at antenna height h=10 m above ground, L/λ=1/10, and triangular 

current distribution 

34 

Figure 3.11 The absolute value of the electric field radiated in the air versus point 

location in the z-axis for a fixed distance from the source in an x horizontal direction 

x=200 m, f=3 GHz, at antenna height h=20 m above ground, L/λ=1/10, and sinusoidal 

current distribution 

34 

Figure 3.12 The absolute value of the electric field radiated in the air versus point 

location in the z-axis for a fixed distance from the source in an x horizontal direction 

x=200 m, f=3 GHZ, at antenna height h=20 m above ground, L/λ=1/10, and triangular 

current distribution 

35 



XI 

Figure 3.13 The absolute value of the electric field radiated in the air versus point 

location in the z-axis for a fixed distance from the source in an x horizontal direction 

x=200 m, f=3 GHz, at antenna height h=20 m above ground, L/λ=1/4, and sinusoidal 

current distribution 

36 

Figure 3.10 The absolute value of the electric field radiated in the air versus point 

location in the z-axis for a fixed distance from the source in an x horizontal direction 

x=200 m, f=3 GHz, at antenna height h=20 m above ground, L/λ=1/4, and triangular 

current distribution 

36 

Figure 3.15 The absolute value of the electric field radiated in the air versus point 

location in the z-axis for a fixed distance from the source in an x horizontal direction 

x=200 m, f=3 GHz, at antenna height h=20 m above ground, L/λ=1/2, and sinusoidal 

current distribution 

37 

Figure 3.16 The absolute value of the electric field radiated in the air versus point 

location in the z-axis for a fixed distance from the source in an x horizontal direction 

x=200 m, f=3 GHz, at antenna height h=20 m above ground, L/λ=1/2, and triangular 

distribution 

37 

Figure 3.17 The absolute value of the electric field radiated in the air versus point 

location in the x-axis for a fixed distance in an z vertical direction z=0.25 m, f=3 GHz, 

at antenna height h=20 m above ground, L/λ=1/10, and sinusoidal current distribution 

39 

Figure 3.18 The absolute value of the electric field radiated in the air versus point 

location in the x-axis for a fixed distance in an z vertical direction z=0.75 m, f=3 GHz, 

at antenna height h=20 m above ground, L/λ=1/10, and sinusoidal current distribution 

39 

Figure 3.19 The absolute value of the electric field radiated in the air versus point 

location in the x-axis for a fixed distance in an z vertical direction z=1.25 m, f=3 GHz, 

at antenna height h=20 m above ground, L/λ=1/10, and sinusoidal current distribution 

40 

Figure 3.20 The absolute value of the electric field radiated in the air versus point 

location in the x-axis for a fixed distance in an z vertical direction z=1.75 m, f=3 GHz, 

at antenna height h=20 m above ground, L/λ=1/10, and sinusoidal current distribution 

40 

Figure 3.21 The absolute value of the electric field radiated in the free space versus 

point location in the x-axis for a fixed distance in an z vertical direction z=1.75 m, f=3 

GHz, L/λ=1/10 and sinusoidal current distribution 

41 

Figure 3.22 The absolute value of the electric field radiated in the free space versus 

point location in the x-axis for a fixed distance in an z vertical direction z=1.75 m, f=6 

GHz, at antenna height h=20 m above ground, L/λ=1/10, and sinusoidal current 

distribution 

42 

Figure 3.23 The absolute value of the electric field radiated in the free space versus 

point location in the x-axis for a fixed distance in an z vertical direction z=1.75 m, f=3 

GHZ, at antenna height h=20 m above ground, L/λ=1/10, and sinusoidal current 

distribution 

43 

Figure 3.24 The absolute value of the electric field radiated in the free space versus 

point location in the x-axis for a fixed distance in an z vertical direction z=1.75 m, f=3 
43 



XII 

GHz, at antenna height h=20 m above ground, L/λ=1/10, and sinusoidal current 

distribution 

Figure 4.1 Parallelepiped human body model with height of H, depth of D, and width 

of W is placed at position (x,0,0) 
54 

Figure 4.2 Cylindrical human body model with length L and radius a 56 

Figure 4.3 Bessel functions of the first and second kind [94] 58 

Figure 4.4 SARWBversus point location in the x-axis for a fixed distance from the 

source in an z vertical direction z=0.25 m, f=3 GHz, h=20 m and sinusoidal current 

distribution 

60 

Figure 4.5 SARWB versus point location in the x-axis for a fixed distance from the 

source in an z vertical direction z=0.75 m, f=3 GHz, h=20 m and sinusoidal current 

distribution 

60 

Figure 4.6 SARWB versus point location in the x-axis for a fixed distance from the 

source in an z vertical direction z=1.25 m, f=3 GHz, h=20 m and sinusoidal current 

distribution 

61 

Figure 4.7 SARWB versus point location in the x-axis for a fixed distance from the 

source in an z vertical direction z=1.75 m, f=3 GHz, h=20 m and sinusoidal current 

distribution 

61 

Figure 4.8 The absolute value of the electric field versus point location in the x-axis for 

the frequency f=6 GHz 
63 

Figure 4.9 The absolute value of the electric field versus tissue depth for a fixed 

distance from the source in a z vertical direction z=1.65 m, h=20 m, f=3 GHz, L/λ=1/10, 

and sinusoidal current distribution 

64 

Figure 4.10 The absolute value of the electric field versus tissue depth for a fixed 

distance from the source in a z vertical direction z=1.65 m, h=20 m, f=6 GHz, L/λ=1/10, 

and sinusoidal current distribution 

64 

Figure 4.11 The absolute value of the electric field versus tissue depth for a fixed 

distance from the source in a z vertical direction z=1.65 m, h=20 m, f=9 GHz, L/λ=1/10, 

and sinusoidal current distribution 

65 

Figure 4.12 SAR versus point location in the x-axis for a fixed distance from the source 

in an z vertical direction z=1.65 m, h=20 m, f=3 GHz, L/λ=1/10, and sinusoidal current 

distribution 

65 

Figure 4.13 SAR versus point location in the x-axis for a fixed distance from the source 

in an z vertical direction z=1.65 m, h=20 m, f=6 GHz, L/λ=1/10, and sinusoidal current 

distribution 

66 

Figure 4.14 SAR versus point location in the x-axis for a fixed distance from the source 

in an z vertical direction z=1.65 m, h=20 m, f=9 GHz, L/λ=1/10, and sinusoidal current 

distribution 

66 

Figure 4.15 TPD versus tissue depth for a fixed distance from the source in a z vertical 

direction z=1.65 m, h=20 m, f=3 GHz, L/λ=1/10, and sinusoidal current distribution 
67 

Figure 4.16 TPD versus tissue depth for a fixed distance from the source in a z vertical 

direction z=1.65 m, h=20 m, f=6 GHz, L/λ=1/10, and sinusoidal current distribution 
67 



XIII 

Figure 4.17 TPD versus tissue depth for a fixed distance from the source in a z vertical 

direction z=1.65 m, h=20 m, f=9 GHz, L/λ=1/10, and sinusoidal current distribution 
68 

Figure 4.18 SARWB versus point location in the x-axis for a fixed distance from the 

source in an z vertical direction z=1.65 m, f=6 GHz, h=20 m, L/λ=1/10, and sinusoidal 

current distribution 

69 

Figure 4.19 TPDtotversus point location in the x-axis for a fixed distance from the 

source in an z vertical direction z=1.65 m, f=6 GHz, h=20 m, L/λ=1/10, and sinusoidal 

current distribution 

69 

Figure 5.1 Heat flux [94] 74 

Figure 5.2 Example for BCs formulation for 1-D plane wall [112] 75 

Figure 5.3 Transient vs Steady-state response 75 

Figure 5.4 Geometry of the single-layer problem 83 

Figure 5.5 Geometry of the 3-layer human body model 84 

Figure 5.6 Tissue temperature vs tissue depth in single-layer tissue model for λ=0.49, 

𝑊𝑏 =2100, 𝑇𝑎=37, 𝑄𝑚=300, ℎ=7, and 𝑇𝑎𝑖𝑟 =25 
94 

Figure 5.7 Tissue temperature vs tissue depth in single-layer tissue model for different 

values of power produced by metabolic process 𝜆=0.49, 𝑊𝑏=2100, 𝑇𝑎=37, ℎ=7, and 

𝑇𝑎𝑖𝑟 =25 

95 

Figure 5.8 Tissue temperature vs tissue depth in single-layer tissue model for different 

blood perfusion rate, 𝜆 = 0.49, 𝑇𝑎 = 37, 𝑄𝑚 = 300, ℎ = 7, and 𝑇𝑎𝑖𝑟 = 25 
95 

Figure 5.9 Tissue temperature vs tissue depth in single-layer tissue model for different 

tissue thermal conductivities, 𝑊𝑏 = 2100, 𝑇𝑎 = 37, 𝑄𝑚 = 300, ℎ = 7, and 𝑇𝑎𝑖𝑟 = 25 
96 

Figure 5.10 Tissue temperature vs tissue depth in single-layer tissue model for different 

heat exchange coefficient, 𝜆 = 0.49, 𝑊𝑏 = 2100, 𝑇𝑎 = 37, 𝑄𝑚 = 300, and 𝑇𝑎𝑖𝑟 = 25 
96 

Figure 5.11 Tissue temperature vs tissue depth in single-layer tissue model for different 

ambient temperature, 𝜆 = 0.49, 𝑊𝑏 = 2100, 𝑇𝑎 = 37, 𝑄𝑚 = 300, and ℎ = 7 
97 

Figure 5.12 Tissue temperature vs tissue depth in single-layer tissue model: 

comparation with other analytical methods 
98 

Figure 5.13 Tissue temperature elevation vs tissue depth in 3-layer tissue model: 

comparation with other analytical methods 
100 

Figure 6.1 Deterministic vs Stochastic-Deterministic Model [140] 104 

Figure 6.2 The mean of the temperature distribution for 𝜆 = 0.49, 𝑊𝑏 = 2100, 𝑇𝑎 =

37, 𝑄𝑚 = 300, ℎ = 7, and 𝑇𝑎𝑖𝑟 = 25 
113 

Figure 6.3 The standard deviation of the temperature distribution for 𝜆 = 0.49, 𝑊𝑏 =

2100, 𝑇𝑎 = 37, 𝑄𝑚 = 300, ℎ = 7, and 𝑇𝑎𝑖𝑟 = 25 
114 

Figure 6.4 The confidence interval (CI) given as the mean temperature ∓ standard 

deviation of the temperature for 𝜆 = 0.49, 𝑊𝑏 = 2100, 𝑇𝑎 = 37, 𝑄𝑚 = 300, ℎ = 7, 

and 𝑇𝑎𝑖𝑟 = 25 

114 

Figure 6.5 The sensitivity indices of first (solid line) and total order (star marker) for 

each random input parameter 
115 



XIV 

Figure 6.6 The mean of the temperature distribution for 𝜆𝑠𝑘𝑖𝑛 = 0.42, 𝜆𝐹𝐴𝑇 = 0.25, 

𝜆𝑚𝑢𝑠𝑐𝑙𝑒 = 0.50, 𝑑𝑠𝑘𝑖𝑛 = 1, 𝑑𝐹𝐴𝑇 = 2, 𝑎𝑛𝑑 𝑑𝑚𝑢𝑠𝑐𝑙𝑒 = 26 
117 

Figure 6.7 The variance deviation of the temperature distribution for 𝜆𝑠𝑘𝑖𝑛 = 0.42, 

𝜆𝐹𝐴𝑇 = 0.25, 𝜆𝑚𝑢𝑠𝑐𝑙𝑒 = 0.50, 𝑑𝑠𝑘𝑖𝑛 = 1, 𝑑𝐹𝐴𝑇 = 2, 𝑎𝑛𝑑 𝑑𝑚𝑢𝑠𝑐𝑙𝑒 = 26 
117 

Figure 6.8 The standard deviation of the temperature distribution for 𝜆𝑠𝑘𝑖𝑛 = 0.42, 

𝜆𝐹𝐴𝑇 = 0.25, 𝜆𝑚𝑢𝑠𝑐𝑙𝑒 = 0.50, 𝑑𝑠𝑘𝑖𝑛 = 1, 𝑑𝐹𝐴𝑇 = 2, 𝑎𝑛𝑑 𝑑𝑚𝑢𝑠𝑐𝑙𝑒 = 26 
118 

Figure 6.9 The confidence interval (CI) given as the mean temperature ∓2 standard 

deviation of the temperature for 𝜆𝑠𝑘𝑖𝑛 = 0.42, 𝜆𝐹𝐴𝑇 = 0.25, 𝜆𝑚𝑢𝑠𝑐𝑙𝑒 = 0.50, 𝑑𝑠𝑘𝑖𝑛 =

1, 𝑑𝐹𝐴𝑇 = 2, 𝑎𝑛𝑑 𝑑𝑚𝑢𝑠𝑐𝑙𝑒 = 26 

118 

Figure 6.10 The confidence interval (CI) given as the mean temperature ∓3 standard 

deviation of the temperature for 𝜆𝑠𝑘𝑖𝑛 = 0.42, 𝜆𝐹𝐴𝑇 = 0.25, 𝜆𝑚𝑢𝑠𝑐𝑙𝑒 = 0.50, 𝑑𝑠𝑘𝑖𝑛 =

1, 𝑑𝐹𝐴𝑇 = 2, 𝑎𝑛𝑑 𝑑𝑚𝑢𝑠𝑐𝑙𝑒 = 26 

119 

Figure 6.11 Convergence of SC methods in computation of standard deviation of 

temperature when only skin depth is RV at a time 
119 

Figure 6.12 Convergence of SC methods in computation of standard deviation of 

temperature when only SAT depth is RV at a time 
120 

Figure 6.13 Convergence of SC methods in computation of standard deviation of 

temperature when only muscle depth is RV at a time 
121 

Figure 6.14 Convergence of SC methods in computation of standard deviation of 

temperature when only skin thermal conductivity is RV at a time 
121 

Figure 6.15 Convergence of SC methods in computation of standard deviation of 

temperature when only SAT thermal conductivity is RV at a time 
122 

Figure 6.16 Convergence of SC methods in computation of standard deviation of 

temperature when only muscle thermal conductivity is RV at a time 
122 

Figure 6.17 The sensitivity indices of first (solid line) and total order (circle marker) 

for each random input parameter 
123 

 

List of Tables 

Table 3.1 Coefficients used in (3.43) 26 

Table 3.2 Coefficients used in (3.44) 26 

Table 3.3 Nominal valued of VED and VED environment 28 

Table 4.1 Human body properties 59 

Table 5.1 Coefficients used in (5.50), (5.51), and (5.52) 89 

Table 5.2 Coefficients used in (5.53), (5.54), and (5.55) 92 

Table 5.3 The nominal values for the thermal parameters 94 

Table 5.4 The values for the thermal parameters 98 

Table 5.5 The values for the thermal parameters in 3-layer models 100 



1 

List of Abbreviations 

Fifth Generation Networks 5G 

ANalysis Of VAriance ANOVA 

American National Standards Institute ANSI 

Absorbed Power Density APD 

Boundary Condition BC 

Boundary Element Method BEM 

Basic Restriction BR 

Computer Aided Design CAD 

Computational Electromagnetics CEM 

DeoxyriboNucleic Acid DNA 

Electric Field Integral Equation EFIE 

Electromagnetic EM 

Finite Difference Method FDM 

Finite-Difference Time-Domain FDTD 

Finite Element Method FEM 

Finite Integration Technique FIT 

Galerkin-Bubnov Indirect Boundary Element Method GB-IBEM 

generalized Polynomial Chaos gPC 

High Frequency HF 

International Commission on Non-Ionizing Radiation Protection ICNIRP 

Committee on Electromagnetic Safety of the Institute of Electrical and 

Electronics Engineers 

IEEE 

Incident Power Density IPD 

Low Frequency LF 

Monte Carlo MC 

Medium Frequency MF 

Very HF VHF 

Ultra HF UHF 

Modified Image Theory MIT 

Method based on modified PBHE MPBH 

National Council on Radiation Protection and Measurements NCRP 

Numeric Electromagnetic Code NEC 

One-at-a-Time OAT 

Pennes’ Bio-Heat transfer Equitation PBHE 

Partial Differential Equation PDE 

Perfectly Electric Conducting PEC 

Radio Frequency RF 

Reference Levels RL 

Random Variable RV 



2 

Specific Absorption Rate SAR 

Stochastic Collocation SC 

Separation of Variables SoV 

Saddle Point Method SPM 

Thin Wire Approximation TWA 

Transmitted Power Density TPD 

Uncertainty Propagation UP 

Uncertainty Quantification UQ 

Vertical Electric Dipole VED 

Variational Iteration Method VIM 

Very LF VLF 

Volume Power Density VPD 

 

 

Biography 

 

Enida Cero Dinarević was born in Konjic on March 29, 1990. She studied at the University of 

Sarajevo, and got Bachelor degree (2008-2011) and Master degree (2011-2013) in Electrical 

Engineering – department for Telecommunication. Obtained honors and awards include the 

best student of gymnasium – Ju "Srednja škola" Konjic (2008), Praise for the outstanding 

success achieved during studies at the Faculty of Electrical Engineering in Sarajevo, 

Department of Telecommunications (2011)– Silver badge of the University of Sarajevo (2013), 

and the best paper award - IFMBE Clinical Engineering Division and Global Clinical 

Engineering Alliance Awards (2021). 

 

Her employment experience included the American University in Sarajevo, Codding Giants 

School for programing, and BH Telecom. As part of work expirence in BH Telecom she 

participates in the testing of IT and communication equipment and solutions, in the monitoring 

of standards and recommendations, in cooperation with higher education and scientific 

institutions and organizations, cooperation with other companies in terms of development and 

testing of new technological solutions and services, and preparation of procedures and 

instructions related to service tasks and other tasks in accordance with the order of the 

immediate manager, and participates in innovation support activities. Enida has teaching 

experience in topics: web technologies, fundamentals of programming, java artificial 

Intelligence, machine learning, communication networks, number systems, binary logic and 

information literacy.  

 

Her special fields of interest include IoT (applications, design, protocols), Sensor networks 

5G related topics, Biomedical Engineering, and Human Interactions with Electromagnetic 

fields. 



3 

 

CHAPTER 1 

Introduction 

 

1.1 Motivation 

Electromagnetic (EM) fields are emitted by many human and natural sources daily, and 

the introduction of new frequencies and new technologies, such as in Fifth Generation 

(5G) networks, affects human exposure to these systems. More than 3 billion people are 

exposed to the influence of EM fields worldwide on a daily basis [1], and generations of 

new mobile technology require new methods for human exposure to EM fields analysis 

[2]. Considering the upcoming implementation of the 5G system, and the fear of the 

potential harmful effects of these systems on the overall health, the importance of 

electromagnetic-thermal dosimetry has increased significantly.  

Various organizations have proposed guidelines for limiting exposure to EM field, and 

the most commonly used are defined by the International Commission on Non-Ionizing 

Radiation Protection (ICNIRP) [3] and Committee on Electromagnetic Safety of the 

Institute of Electrical and Electronics Engineers (IEEE) [4]. Guidelines are given in terms 

of Basic Restriction (BR) and/or Reference Levels (RL). BR are exposure indices inside 

the body that must not be exceeded, and the specification depends on the operating 

frequency. BRs must be respected when implementing the system, while compliance with 

RL does not mean that BRs are also respected. 

Since BRs are frequency dependent, it is worth to mention that 5G systems use two main 

frequency bands: the frequency band below 6 GHz (Frequency Range 1, FR1) and the 

millimetre wave band (Frequency Range 2, FR2) [5]. The advantage of transmission 

below 6 GHz is the balance of capacity and coverage [5]. The SAR [4] is the BR defined 

for the high frequency (HF) area (FR1), and it is specified in terms of the maximum whole-

body average SAR (SARWB) and peak spatial average SAR [3]. Above 6 GHz (FR2) EM 

fields are absorbed at the body surface, and exposure is described in terms of RLs for 

maximum externally applied electric and magnetic field strength, and in terms of power 

density. For local exposure to frequencies higher than 6 GHz, related to the temperature 

increase in the surface layer, the use of Absorbed Power Density (APD) is recommended 

in [6]. 

In FR1 and FR2, the dominant effect of excessive exposure to EM fields is tissue heating, 

with adverse effects occurring when the temperature is elevated between 1-2 ℃ [7]. A 
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SARWB value bellow 0.4  
W

kg
 is considered safe for professional exposure, and a value 

bellow 0.08 
W

kg
 is considered safe for public exposure [3]. Due to the different 

thermoregulatory properties of different tissues in the human body, the peak limits for 

spatially averaged SAR (1 g or 10 g, cubed) for exposure in controlled environments are 

20  
W

kg
 for limbs and 8  

W

kg
 for head, neck and trunk. For exposure in uncontrolled 

environments, the peak limits of spatially averaged SAR are 4.0 
W

kg
 for limbs and 1.6 

W

kg
 

for head, neck and trunk [4]. 

Electromagnetic dosimetry procedures provide the quantification of the energy absorbed 

by the human body or its part exposed to HF EM fields. The assessment of dosimetric 

quantities is based on theoretical or experimental techniques, and involves three steps: 

incident field dosimetry, internal field dosimetry and the thermal dosimetry.  

The first step is the assessment of the distribution of the incident EM field (external field 

in the absence of the human body) which induces EM field inside the body (internal field). 

The field interaction with the human body depends on the ratio of wavelength to body 

size (human height at the resonance frequency is approximately 0.4 wavelengths of radio 

frequency (RF) waves in free space [8]), and in FR1 and FR2 the absorption is at the 

surface. Induced currents and fields can lead to thermal and non-thermal effects in general, 

and in the HF region thermal effects are dominant. Since the basic dosimetric quantity in 

FR1 is SAR, and direct experimental measurements of the thermal response in healthy 

humans are not possible, many computational studies aim to link SAR and temperature 

rise in the human body. Temperature elevation leads to third step in dosimetry also called 

thermal dosimetry usually based on the model proposed by Pennes’ and related numerical 

simulation method. 

On the other hand, analytical solutions are very interesting due to the simplicity and speed 

in the calculation of dosimetric quantities compared to experimental and numerical 

calculations [9-12]. Therefore, simplifications of EM problems providing a faster 

assessment and analytical solution are always welcome. Analytical solutions can be 

validated through comparison with numerical methods or measurements if possible.  

Various antenna systems are the usual electromagnetic interference (EMI) sources. Ever 

since the beginning of the 19th century, vertical dipole antennas have been used in various 

applications in the field of wireless communications [13]. The need for interference 

reduction in the frequency band below 6 GHz in 5G systems, requires RF network 

implementation with a large number of small cells, and base stations equipped with small 

and directional antennas [14], such as a vertical electric dipole (VED). The simplest 

approach for EM modelling of VED radiation is the approximation of free space in which 

only the direct ray is considered, ignoring the field components reflected from surrounding 

objects. Such approach is presented in [15, 16]. On the other hand, neglecting the reflected 
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components can significantly reduce the calculated value of the irradiated electric field 

compared to the real-life scenarios. Therefore, to improve the accuracy of the calculation, 

the antenna is placed above the ground with losses, which is formulated in terms of 

Sommerfeld integrals. The traditional solution of Sommerfeld problem deals with Hertz 

potentials, which cannot be solved analytically without a set of approximations. 

Analytically based internal field dosimetry can provide a satisfactory level of accuracy 

under certain conditions, which makes it attractive for engineering applications. In 

addition to simplicity and speed, these models provide relatively accurate results for the 

magnitude of the internal electric field even when canonical models of the human body 

are used.  

As is the case with incident and internal EM field dosimetry procedures, thermal 

dosimetry procedures can be performed both analytically and numerically. Traditionally, 

numerical methods are used when analytical solutions are not available, while analytical 

methods are preferred because they are simple and fast [9]. Furthermore, analytical 

methods can also be used for benchmarking.  

Computational models used to describe the interaction of EM and thermal fields are 

mostly deterministic in nature and thus provide results for a specific set of input 

parameters. As measurements in vivo are not possible there is an inherent uncertainty in 

the input data set [17]. This problem can be overcome by using stochastic modelling. 

 

1.2 Scientific method and contribution 

The goal of the research is to develop a simplified analytical deterministic-stochastic 

model for rapid assessment of thermal response of the human body due to exposure to 

external fields. The model consists of a VED placed at a height h above the real ground 

and a human body modelled in the form of a parallelepiped or cylinder. Note that VED 

could be considered as a simple representation of base station antenna. Plane wave 

exposure is assumed, and complete dosimetric procedure includes 3 steps: incident field 

dosimetry, internal field dosimetry and thermal dosimetry.  

Within the incident field dosimetry, the electric field irradiated by finite-length dipole 

antenna at any point of the upper half-space is obtained, using a rigorous numerical 

approach, an approximate numerical approach with an assumed current distribution, and 

an analytical approach.  

The irradiated electric field of a finite-length VED at any point of the upper half-space, is 

usually calculated numerically. The current distribution along the antenna is obtained by 

numerically solving the Pocklington equation. In this thesis such approach is referred as 

a rigorous numerical approach due to the minimum number of used approximations. If the 
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current distribution along the wire can be approximated by analytical expressions, 

including trigonometric functions, as in [18, 19], solving the Pocklington equation can be 

avoided without significant loss of accuracy. If the current distribution is assumed and 

field integrals are solved numerically the approach is refered as an approximate numerical 

approach with an assumed current distribution. If the current distribution is assumed and 

field integrals are solved analytically the approach is refered as an analytical approach 

with an assumed current distribution. In this thesis, within the framework of certain 

conditions, a sinusoidal or triangular current distribution, respectively, along the wire is 

assumed. 

The results for the irradiated field in case of rigorous numerical approach, are obtained 

using the Numeric Electromagnetic Code (NEC) [20]. Having solved the Pocklington 

integral equation, numerical solution of the field integrals are performed. Within the 

framework of the thesis, for approximate numerical approach with assumed current 

distribution, a procedure for numerical solution of the field integral is developed. 

Comparison of the results for the irradiated electric fields obtained for rigorous numerical 

approach and the approximate numerical approach with assumed current distribution and 

for different values of the model parameters, allows to define the conditions in which the 

approximate approach can be applied. When used in proper conditions, approximate 

numerical approach with assumed current distribution reduces computational costs. Both 

models give similar results when the vertical dipole antenna is electrically short (𝐿 ≤
λ

10
) 

and when the ratio of the height of the antenna above the ground and wavelength satisfies 

ℎ ≥ 10λ. The results obtained on the basis of the previous two approaches are also valid 

in the near field, which means that they include the terms 
1

R2
  and 

1

R3
 . 

The analytical solution is based on the far-field approximation (only term which contains 
1

R
 dependence is used). By comparing the results for all three approaches, an additional 

limitation is imposed. Namely, when the distance in the horizontal direction is above 60 

m these three models agree satisfactorily. For small distances in the horizontal direction 

(x < 40 m), due to the far field approximation used in proposed analytical approach, the 

significant overestimation of the field values could be observed. 

In the second step, the induced electric field, SAR and the TPD in the human body exposed 

to VED radiation are obtained. Two simple body models are considered: the 

parallelepiped human body model and the cylindrical human body model. In 

parallelepiped incident field decreases exponentially with tissue depth. On the other hand, 

the cylindrical model is based on solving Pocklington's integro-differential equation for 

the so-called thick wire, which is solved by applying the general expression for the total 

axial current in the form of the sum of sine functions. The procedure for determining the 

coefficient of sine functions in the general expression for the axial current distribution is 

represented in detail in [21]. The coefficients are expressed through integrals that are 
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calculated numerically, which makes cylindrical model difficult to apply in stochastic-

deterministic thermal modelling. 

The difference between the SARWB obtained in parallelepiped and cylindrical human body 

models in the x horizontal direction is less than 10 % at 80 m away from source VED 

antenna. A parallelepiped human body model can further simplify the internal dosimetry 

and further save computational cost, specifically if thermal dosimetry is of interest. 

In thermal dosimetry, the stationary Pennes’ equation of heat transfer in biological tissues 

is considered. The disadvantage of this approach is that it does not take into account time 

dependence, but the simplicity of the mathematical expression facilitates parametric 

analysis [102] and provides simpler analysis in multi-layer tissue modelling, since the 

internal structure of the skin plays a very important role in realistic calculation of 

temperature elevation in human body [22]. 

Within the framework of the thesis, a planar multi-layer human body model (skin-fat-

muscle) is used. To solve the Pennes’ Bio-Heat transfer Equation (PBHE) analytically, 

power density from external heat source related to the absorbed EM energy irradiated 

from VED antenna, is assumed to either be constant, or exponentially decreasing with the 

tissue depth. These two models are created under the assumption that the tissue is 

homogeneous and isotropic, that the properties of the tissue are temperature independent, 

that the heat generated by metabolism is constant, that the blood perfusion rate is spatially 

and temporally uniform and independent of the tissue temperature, and that arterial blood 

temperature is constant [23]. 

The PBHE can be solved by first reducing the number of parameters in the parametric 

analysis, in such a way as to observe the state before exposure to the EM field, presented 

by the initial temperature, and then introducing a new variable related to the temperature 

change in the stationary state in relation to the state before exposure to the EM field, 

instead of observing the final temperature in the stationary state. The resulting modified 

equation describing heat transfer can be solved analytically for multi-layer media using 

the classical theory of ordinary differential equations. Within each layer, the temperature 

increase is described by the superposition of the solution of the homogeneous linear 

equation and the solution of the particular linear equation (constant variation method). 

The value of the constants in the general solution in each tissue layer can be determined 

using appropriate boundary conditions (BCs) at the boundaries of the two layers. The 

method of variation of the constants is rather suitable for linear systems, while it is more 

difficult to apply this approach to non-linear systems [24]. 

The impossibility of in-vivo measurement of thermal parameters is the cause of 

uncertainties in the set of input parameters, that is, in the set of corresponding input 

variables. Namely, the input variables then can be modelled as random variables (RVs) 

with a certain probability density function associated with them. In the simplest case, a 
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uniform distribution of the value of the RV around the mean can be assumed. For each set 

of input variables, the calculation is performed, giving one output quantity. Output values 

are presented in the form of stochastic values such as mean, variance, standard deviation 

and confidence interval. For this purpose, within the stochastic part of the thermal models, 

the uncertainty of input parameters is quantified using stochastic collocation (SC). The 

thermal conductivity and the thickness of the tissues in three layers (skin-fat-muscle) are 

chosen to be input RVs. 

Furthermore, a sensitivity analysis of the corresponding input parameters is carried out. 

The purpose of sensitivity analysis is to observe the influence of individual and collective 

input variables on the output variable of interest. In other words, the sensitivity analysis 

allows the ranking of the input parameters according to the level of influence on the output 

value. A simple approach in sensitivity analysis is called "One-at-a-Time" (OAT), which 

studies the variances of a one-dimensional problem. Thus, only one variable at the input 

is changed, while the other variables are treated as constants. The main advantage of this 

method is the ability to quickly rank the variables according to the level of influence on 

the output value. However, the OAT method cannot provide information on the collective 

influence of two or more input variables on the output quantity and mutual interaction 

between input RVs. This shortcoming can be overcome using ANalysis Of VAriance 

(ANOVA). Sensitivity analysis, based on variance decomposition in which the variance 

of the model is split into members depending on the input factors and their mutual 

interactions, provides the calculation of sensitivity indices of the first and higher orders 

[25]. 

 

1.3 Thesis outline 

The thesis is organized in seven chapters. Chapter 2 describes the interaction of HF fields 

with living material. First, short explanation of interaction mechanisms is given, followed 

by the main effect of EM fields in different frequency bands. Safety guidelines are further 

elaborated. Chapter 2 ends up with some general aspects in dosimetry. 

In Chapter 3 incident dosimetry methods are explained. Source of EM fields is VED 

antenna above a lossy half space at height h. After presentation of incident field 

calculation, some simplification from literature needed for analytical solution of incident 

field calculation are introduced. The analytical approach to incident dosimetry developed 

as part of thesis is explained along with the results obtained. The results from Chapter 3 

are necessary for the next step related to the internal dosimetry procedure. 

Chapter 4 provides an analysis of internal EM dosimetry. Coupling between external and 

internal fields, followed by theoretical dosimetry basics and approaches to internal EM 

dosimetry is given. This chapter, presents analytical approaches and simple human body 

models, which provide closed form solution of internal dosimetric quantities. 
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Furthermore, analytical approach to internal EM dosimetry in parallelepiped and 

cylindrical human body is explained in detail, and the calculated results are compared.  

Chapter 5 deals with the thermal dosimetry based on the PBHE. Analytical approach to 

thermal dosimetry from this study will be explained on single-layer muscle tissue and 3-

layer human body composed of skin, fat and muscle. 

In Chapter 6 deterministic stochastic thermal dosimetry is presented. Starting from 

explanation of need for stochastic-deterministic modelling, through uncertainty 

propagation (UP) to basic concept of sensitivity analysis. Then approach to stochastic-

deterministic thermal dosimetry from proposed study is explained on 3-layer human body 

composed of skin, fat and muscle. Concluding remarks are given in Chapter 7. 
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CHAPTER 2 

Interaction of high frequency fields with living material 

 

2.1 Interaction mechanisms 

The interaction of EM waves with humans depends on the properties of the incident wave, 

the environment and the human body. Interacting with the human body, one part of the 

EM wave is absorbed and the other part is reflected. The absorbed part of the incident 

wave is the trigger for the possible occurrence of any detectable, reversible or irreversible 

changes in the organism. Harmful effects on human’s health are often accumulative in 

nature, and are closely related to the time of exposure as well as the radiation dose [7]. 

Although it is currently known that certain levels of EM fields have a harmful effect on 

humans, the impact of long-term exposure to levels significantly lower than the limit given 

in the guidelines [3], is still being investigated. 

Energy absorption is appriciately frequency dependent. At low frequencies (LFs) the 

dominant effect of EM fields (EMFs) is stimulation of muscles, nerves and sensory organs 

[26]. In HF region wavelengths of EM waves are comparable to dimensions of the human 

organs, so tissue heating is dominant EM effect.  

Assessment of the environmental impact and health implications of EM waves, 

quantitative description of the EM fields and power deposition in the tissues is required. 

The penetration or skin depth is considered as the depth of EM waves at which the 

amplitude of transmitted power density (TPD) is attenuated by a value of 
1

e2
 [27]. The 

intensity of EMFs in the human body decreases exponentially from the surface to the 

interior of the tissue, which can be mathematically expressed: 

I(z) = I0 e
−αz  (2.1) 

where 

- I stands for electric field intensity or magnetic field intensity as a function of 

depth z [
V

m
], 

- I0 is the electric field intensity or magnetic field intensity at the surface [
V

m
], and 

- α is the attenuation coefficient [
Np

m
]. 
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The penetration depth is a function the wave frequency, the strength of the field and the 

electrical and dielectric properties of the human body [27]. The penetration depth is 

smaller at higher frequencies, i.e. inversely proportional to the frequency of the incident 

wave. The higher the frequency of the EMF the stronger the absorption at the human body 

surface, therefore the higher the frequency the shorter the distance the field can penetrate 

into the human body.  

Dielectric and electrical properties play an important role in determining the energy 

deposition and hence, temperature elevation in biological matter. They depend of the 

composition of the tissues in the human body, and the amount of water in the tissue is the 

most important factor. It is clear that in HF frequency region muscle, with a typical water 

content of 75 %, exhibits a much higher permittivity and conductivity than does fat (which 

typically has a water content of some 5 - 20 %) [28]. 

The dielectric properties of materials are obtained from their measured complex relative 

permittivity [29].  

ε∗r = εr
′ − jεr

′′  (2.2) 

εr
′′ =

σ

ωε0
 (2.3) 

where 

- εr
′  is the relative permittivity of the material and,  

- εr
′′ is the out-of-phase loss factor, 

- ε0 is the vacuum permittivity [
F

m
],  

- σ is conductivity [
S

m
], and 

- ω is the angular frequency [
1

s
]. 

The relative permittivity of a tissue decreases at high frequencies, and may reach values 

of up to 107 at frequencies below 100 Hz [29]. More details about theoretical aspects and 

the main findings in this subject are described in [28, 30, 31]. In addition to the relative 

permittivity, the conductivity also depends on the frequency and increases with increasing 

frequency [32]. 
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2.2 Biological effects 

Due to the use of a large number of electronic devices in everyday life, the human body 

is simultaneously exposed to radiation of EM waves of different frequencies. As the 

frequency of the EM energy spectrum changes from extremely low to Gamma rays, the 

effects of EMFs on humans also change [33] (Fig. 2.1). 

 

Figure 2.1 EMF effects vs frequency 

Extreme LF (ELF) and Very LF (VLF) frequency band induce non-thermal effects, while 

LF, Medium Frequency (MF), HF, Very HF (VHF), Ultra HF (UHF) bends lead to heat 

generation (thermal effects) [33]. EMFs on aforementioned frequencies are classified as 

non-ionizing radiation.  

Broadly, nonionizing field are categorized as low frequencies (LF), with frequencies 𝑓 <

~ 30 kHz and high frequencies (HF) with frequencies ~ 30 kHz < 𝑓 < ~ 300 GHz. 

According to literature, LF fields may cause excitation of sensory, nerve and muscle cells 

[34]. Namely, in frequency range up to 10 MHz, time-varying electric and magnetic fields 

induce electric fields and currents inside the body, which cause stimulation of nerves and 

muscles [35].  

HF fields are absorbed by the body, and the related heating effects are dominant [34]. 

Thermal effects are associated with the heat created by EMFs in a certain area, and it is 

possible that every interaction between HF fields and living tissues causes an energy 

transfer resulting in a temperature rise [1]. At frequencies above 100 MHz, absorption of 

EM energy results in an increase of body temperature, either general or local [35]. 

However, at frequencies above 10 GHz, the energy absorption is limited to the body 

surface [35]. 

At ultra violet, X-Ray and Gamma Rays frequencies ionizing radiation occurs, which may 

lead to different non-thermal effects, such as Deoxyribonucleic acid (DNA) damage, 
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cancer, mutation and birth defects [33].  

The introduction of new technology, such as 5G recently, has led to public health concerns 

around the world. Two international organizations, ICNIRP and IEEE, have been 

addressing this issue for decades. The goal is to provide human exposure limits that many 

serve as a protection against established or substantiated adverse health effects, to be 

further explained in more detail below. 

 

2.3 Safety guidelines 

Various organizations have proposed guidelines for limiting exposure to EMFs for 

protection against all established adverse health effects. The most commonly used limits 

are defined by ICNIRP [3] and by IEEE [4]. Threshold levels are defined according to 

scientific and professional knowledge, which are often based on experimental research on 

phantoms, in which a harmful effect on the body is proven. At dosimetric levels with 

proven harmful consequences of EMFs, so-called safety factors (usually 2, 5, 10, or 50) 

are applied, depending on whether it is a whole-body exposure or a local exposure. 

Compared to occupational exposures, in the area of public, increased, and uncontrolled 

exposure, larger safety factors are applied [3]. 

Guidance are given in terms of BRs and/or RLs (Fig. 1.2). BRs are exposure indices within 

the body that should not be exceeded, and are specified in terms of non-measurable 

internal electric field [3] and the current density in LF range.  

 

Figure 2.2 Quantities in the guidelines: BCs on the internal dose and RLs for the 

external exposure 
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The rate of RF energy absorption (SAR) [3] is the BR specified for HF range. Since 

measurements of the SAR or internal electric field strength are often difficult to perform, 

RLs for maximum human exposure to RF fields have also been specified. The RLs are 

specified in terms of unperturbed, externally applied electric and magnetic field strength, 

power density and in terms of electric currents in the body occurring from either induction 

or contact with energized metallic objects.  

While compliance with the BRs is required, non-compliance with the RLs does not 

necessarily mean that the BRs are exceeded. In such cases, additional measurements or 

calculations may be required to assess compliance. Further on, BRs are mainly addressed, 

but additional information about RLs are offered in [3].  

BRs are frequency dependent dosimetric quantities. For 3 kHz – 10 MHz frequency range 

BRs for the avoidance of non-thermal effects are specified in terms of maximum internal 

electric field strength within the body [3]. In the frequency range from 100 kHz to 300 

GHz tissue heating must be restricted. Bellow 6 GHz limits are given in terms of specific 

energy absorption rate or maximum SARWB and peak spatially-averaged SAR (averaged 

over a small cubical volume) [3]. Above 6 GHz, EMFs are absorbed dominantly on the 

surface, and expressed in terms of RLs for maximum unperturbed, externally applied 

electric and magnetic-field strengths and in terms of power density. 

In the frequency range 100 kHz < 𝑓 <  6 GHz, exposure longer than 𝑡 > 1 h with 

average 𝑆𝐴𝑅𝑊𝐵~6  
W

kg
 is causes a core body temperature change of ~1 ℃ [3]. Adverse 

health effects (effect of vasodilation) may appear when body core temperature elevation 

is between 1-2 ℃ [7], while thermoregulatory changes in skin appear for local increases 

in skin temperature between 1-2 ℃. With the incorporation of the safety factor, a whole 

human body average SAR of 0.4 
W

kg
has been chosen as the restriction that provides 

adequate protection for occupational exposure [3]. An additional safety factor of 5 is 

introduced for public exposure, giving an whole human body average SAR limit of 0.08 
W

kg
 [3]. 

Due to the different thermoregulatory properties of different tissues in the human body, 

peak spatially-averaged SAR limits (1 g or 10 g, in the shape of a cube) for exposures in 

controlled environments are 20  
W

kg
 for the limbs and 8 

W

kg
 for the head, neck and trunk. For 

exposures in uncontrolled environments, the peak spatially-averaged SAR limits are 4 
W

kg
 

for the limbs and 1.6 
W

kg
 for the head, neck and trunk [4]. 

Calculated dosimetric quantities are compared with BRs, to ensure that they are not 

exceeded. Some general dosimetry aspects in calculating dosimetric quantities are 

discussed in next section of this chapter. 
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2.4 Dosimetry – general aspects 

Dosimetry relies on theoretical or experimental techniques, and as already mentioned, is 

carried out in three steps: incident field dosimetry, internal field dosimetry and thermal 

field dosimetry. By the definition, electromagnetic dosimetry represents the quantification 

of energy absorbed by the body or its part exposed to HF EMFs, where the first step is the 

evaluation of external EM field distribution necessary for the assessment of internal fields. 

Antennas are most commonly EMI sources. Of particular interest are thin wire antennas. 

Various models of different antenna systems are used, such as: Norton model short VED 

at the surface of the earth [36], Wait model for line current source above the ground [37], 

King model for VED at height d in air [38, 39], Kurniawan and Wood model [18], 

analytical model for broadband Power line communication (PLC) by Chaaban, Drissi, and 

Poljak [19], Parise model for EMF of an overhead line current source [40], and Nazari 

asymptotic solution for the EM scattering of a VED over plasmonic and non‐plasmonic 

half‐spaces [41]. According to the differential and integral formulation of the problem, 

respectively, domain, boundary or source simulation, numerical methods can be used [17]. 

Furthermore, the distribution of the induced field strongly depends on various parameters, 

such as source (strength, frequency, polarization, direction of incidence, size, shape, etc.), 

distance and location of the source with respect to the body, outer anatomy, inner anatomy, 

body posture, and environment of the body (e.g. reflective objects). For the application of 

analytical approaches in internal field dosimetry simplified human body models are 

necessary. The most commonly used simplified models of the human body are the 

spherical, parallelepiped and cylindrical models. Main featured of of analytical methods 

are mathematical simplicity and low computational cost. Since, human body is complex 

in geometrical sense and non-homogeneous in nature, more accurate results can be 

obtained with numerical methods. A more detailed representation of the human body is 

provided in numerical dosimetry with much higher computational cost.  

As stated earlier, induced currents and fields may give rise to thermal and non-thermal 

effects, and in HF range thermal effects are dominant. The basic dosimetric quantity is 

SAR, and as direct experimental measurements of thermal response on healthy human 

subjects is not possible, many computational studies aim to relate SAR and temperature 

elevation in human body, which leads us to third step in dosimetry. 

Third step in dosimetry is thermal field dosimetry where numerous models can be used to 

describe the process of heat exchange, but the model proposed by Pennes’ is widely used. 

The analytical solution using the Laplace transform method, a method based on modified 

PBHE, method based on Bessel functions, the method based on Green's function and the 

method based on Separation of Variables (SoV) are often used in analysed literature. Even 

analytical methods are preferable in this step, some of the numerical approaches used to 

solve PBHE are Boundary Element Method (BEM), the Finite Element Method (FEM), 
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the Finite Difference Method (FDM), the Dual Reciprocity BEM (DRMBEM), and the 

Monte Carlo (MC) method. 

Research on the impact of EM radiation on the human body is based on the measurement 

of standardized dosimetric quantities and their comparison with defined limits. The dose 

of absorbed EMF energy is dependent of frequency. If the measured/calculated quantity 

is above the permissible limit, short-term/long-term effects of this exposure may occur. 

Even in the case of the mentioned effects, the studies are divided. Some have proven the 

existence of these effects, but the influence is mostly experimentally unconfirmed. 
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CHAPTER 3 

Incident dosimetry methods for simple wire antennas 

 

In this thesis EMI source of interest is VED. Analytical procedures for the assessment 

of the irradiated field by VED are presented in this chapter. 

 

3.1 Vertical Electric Dipole 

Less than a decade after Heinrich Hertz demonstrated, through a series of experiments, 

the existence and many of the properties of EM waves, Marconi explained their usage 

in applications of long-range wireless communication. Ever since the beginning of the 

19th century, VED antennas have been used in various applications in the field of 

wireless communications [13]. The simplest approach for EM modelling of VED 

radiation is the approximation of free space in which only the direct beam of radiation 

is considered, ignoring the field components reflected from the substrate (soil) or 

surrounding objects. This approach is presented in [15, 16]. 

The waves that propagate along the surface of the earth differ from those that travel in 

free space. On the other hand, neglecting the reflected components can significantly 

reduce the calculated value of the irradiated electric field compared to the real-life 

scenarios. Therefore, to improve the accuracy of the calculation, the antenna is placed 

above the lossy ground which is formulated by means of Sommerfeld integra approach. 

The traditional solution of Sommerfeld problem uses Hertz potentials, which cannot 

be solved analytically without significant approximations. 

The EM field generated by a VED was analytically studied extensively beginning with 

the classical work of Sommerfeld in 1908, and continuing in the work of many 

researches e.g. [42-46]. The solution of Sommerfeld problem is given in terms of Hertz 

potentials which are slowly convergent oscillatory integrals.  

Fig. 3.1, shows a VED antenna of length L is placed in the air along the z-axis, above 

a lossy half-space at height h. The resulting field is the superposition of a direct field 

and earth-reflected field. VED antenna is assumed to satisfy the thin wire 

approximation, as in [47-49].  
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Figure 3.2 VED antenna above a lossy half space at height h 

The thin wire approximation requires wire dimensions to satisfy the conditions [26]:  

a ≪ λ0 (3.1) 

a ≪ L (3.2) 

where  

- 𝜆0 is the wavelength of a plane wave in free-space, 

- 𝑎 is the radius of the cross section of the wire, and  

- 𝐿 is wire length. 

The antenna parameters depend on the current distribution along the wire, which is 

obtained as a solution of the Pocklinton integro-differential equation in the frequency 

domain. This equation is obtained from Maxwell's equations by expressing a time-

harmonic electric field by means of a vector magnetic potential and electric scalar 

potential 

E⃗⃗ sct = −∇φ − jωA⃗⃗   (3.3) 

where  

- �⃗� 𝑠𝑐𝑡 is scattered electric field, 
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- 𝜑 the electric scalar potential, and  

- 𝐴  magnetic vector potential. 

By combining (3.3) with the continuity equation for potentials given by.  

∇A⃗⃗ = −jωμεφ (3.4) 

and by adopting the Thin Wire Approximation (TWA) [48] the electric field in z-axis 

direction can be witten as:  

Ez =
1

jωμε0
[
∂2Az

∂z2
+ k0

2Az]  (3.5) 

where  

- ω is the angular frequency [
1

s
], 

- 𝜇0 = 4π × 10
−7 is magnetic permeability [

H

m
], 

- 𝜀0=8.854×10−12 is the permittivity in free space or air [
F

m
], and 

- k0 is air wave number. 

The particular solution of the vector wave equation of the vector magnetic potential is 

Az =
μ

4π
∫ I(z′)g(z, z′)dz′
h+
L
2

h−
L
2

 (3.6) 

where 

- I(z′) is the unknown axial current along the wire, and 

- g(z, z′) is total Green function given as 

g(z, z′) = g0(z, z
′) + RTMgi(z, z

′)  (3.7) 

where 

- g0(z, z
′) is the free space Green function, and 

- gi(z, z
′) arises from MIT 
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g0(z, z
′) =

e−jk0R0

R0
  (3.8) 

gi(z, z
′) =

e−jkiRi

Ri
 (3.9) 

where  

- R0 denotes the distance from the source to the observation point, 

- Ri denotes the distance from the source image to the observation point, and 

- RTM is the reflection coefficient for the transverse magnetic polarization. 

The current distribution is governed by the Pocklington integro-differential equation 

which can be determined by applying continuity conditions for tangential to the wire 

field components on a Perfectly Electric Conducting (PEC) wire surface. The total 

electric field, composed from an incident and scattered field, respectively, disappears 

on the PEC wire [26]: 

Ez
inc + Ez

sct = 0  (3.10) 

 

where  

- Ez
inc is the tangential to the wire incident field [

V

m
], and  

- Ez
sct is the scattered field.  

Now, combining (3.5), (3.6) and (3.10) yields the Pocklington integro-differential 

equations for the unknown wire current I(z′): 

Ez
inc = −

j

ω4πε0
[
∂2

∂z2
+ k0

2] ∫ I(z′)g(z, z′)dz′
h+

L

2

h−
L

2

  
(3.11) 

Provided that current distribution along the wire is known, assumed, or obtained as a 

solution of (3.11) the radiated field can be evaluated. 

Ez
sct =

1

j4πωε0
[
∂2

∂z2
+ k0

2] ∫ I(z′)g(z, z′)dz′
h+

L

2

h−
L

2

  (3.12) 

Next subsection deals with the assessment of the irradiated field for VED antenna using 

some analytical procedures. 
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3.2 Incident dosimetry for Vertical Electric Dipole 

Incident EMFs are defined as external fields in the absence of – i.e. without interaction 

with – the human body, animals, or tissue samples. Incident fields couple with the 

human body and induce EMFs and currents inside the body tissues. The induced fields 

are the only exposure parameters that can interact with biological processes and, 

therefore, provide the primary exposure metric [50]. 

One of the simplest scenarios to assess the human exposure to HF radiation is the 

human body exposed to the EMF radiated by thin wire antenna. Even with the new 

technologies coming along a simple human body model exposed to dipole antenna 

radiation is of interest for quick dosimetry procedures, aiming to get a rapid estimation 

of the phenomena. EM modelling of the radiation from VED antenna above a lossy 

half space usually points the problem towards solving rigorous integrals that represent 

the effect of the media interface. The traditional solution of the classical Sommerfeld 

problem uses Hertz potentials which cannot be evaluated in a closed form.  

Generally, because Sommerfeld type integrals are with infinite limits, they are highly 

oscillatory, difficult to evaluate numerically [42] require intensive computational 

resources, and the accurate evaluation of Sommerfeld integral expressions is not a 

straightforward task.  

As mentioned earlier the first step in calculating the electric and magnetic fields 

generated by wire antennas is to determine the current distribution along the wire. The 

current distribution along the wire is governed by electric field integral equation (EFIE) 

for thin wires, known as the Pocklington’s integro-differential equation, whose 

numerical solution is demanding per se in a sense of accuracy, convergence and kernel 

quasi-singularity [51, 52]. Besides aforementioned analytical and numerical 

techniques, the problem of quantification of the interaction of EM waves within the 

exposed human body can also relay on experimental approaches.  

As analytical methods offer simplicity, and reduce computational cost they are valuable 

tool in many applications of EM dosimetry. In the rest of this chapter review of simple 

analytical techniques for the assessment of VED radiated field is given. 

 

3.2.1 Literature review 

This subsection reviews some analytical techniques for the assessment of VEDradiated 

field. The work of Somerfield on the problem of radiation of VED antenna continued 

with work of Norton. Norton presented his model for short VED at the surface of the 

earth in the of 1930s [36]. On Sommerfeld EMF radiated by an infinitesimal VED 

located on the surface of the planar Earth, Norton introduced the attenuation function, 

the ground effect, and the frequency dependence of the surface wave.  
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Norton’s formalism starts from the Hertz vector composed of a direct wave, a reflected 

wave (the sum is also called space wave) and the surface wave [36]. For small angles 

and short distances, the surface wave term must be used together with direct wave and 

reflected wave. As the distance increases, the direct wave and reflected wave are 

sufficient for the full description of the field behaviour.  

In 1960s, Wait presented pure analytical model which was an important contribution 

since field expressions were derived through usage of the complex image theory. The 

only drawback of the obtained formulas is that they are valid in the quasi-static regime 

only, that is when the effects of the displacement currents in the air space are negligible 

[37]. These results were later used in numerous studies. 

In the quasi near-field region, the field in the air due to the flow of currents induced in 

the ground can be described using a MIT. Namely, in this region, the distance from the 

radiating object is small compared to the wavelength, but large enough compared to 

the skin depth in the ground [16]. According to MIT, reflection coefficient is given as 

[16, 53]: 

RMIT =
εeff−ε0

εeff+ε0
  (3.13) 

εeff = εrε0 − j
σ

ω  (3.14) 

where 

- εeff describes the effective permittivity [
F

m]. 

Therefore, the reflected and total electric field, respectively: 

EMIT
R = RMIT ∗ EMIT

Inc   (3.15) 

EMIT
Tot = EMIT

Inc + EMIT
R   (3.16) 

where 

- EMIT
R  describes the reflected electric field component, 

- EMIT
Inc  is a direct electric field component, and 

- EMIT
Tot  is the total electric field. 

In order to remove the restrictions for the application of the Norton and Wait models 

for the field of dipole over imperfectly conducting ground, King formulated a set of 

equations valid everywhere in the earth and on boundary when the dipole is in either 
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region, or at depth d in the earth. The conditions for applying the model are [38, 39]. 

|k1
2| ≫ k2

2 or |k1| ≥ 3k2  (3.17) 

where 

- k1 = ω√[μ0 (ε1 − j
σ1

ω
)] is the wave number of lower half space, 𝑧 < 0,  

- μ0 is vacuum permeability, and 

- k2 = ω√μ0ε0 is the wave numbers of upper half space (air), 𝑧 > 0. 

When the radial distance (ρ) is large compared the height (d) of dipole or height z of 

the observation point, King model uses phase approximations (3.18, 3.19 and 3.20) and 

amplitude approximations (3.22): 

ρ2 ≫ (z − d)2 ρ2 ≫ (z + d)2 (3.18) 

r1~r0 − dcos(θ)  (3.19) 

r2~r0 + dcos(θ)  (3.20) 

r0 = √ρ2 + z2  (3.21) 

r1~r2~r0  (3.22) 

In the beginning of 20th century Kurniawan and Wood presented the method which 

takes into account the heuristic simplification in calculation of near EMF. Simple 

closed-form analytical formulas of near fields from free space thin finite length dipole 

are multiplying with correction factors (cs or cfl), and the calculations are valid in lossy 

homogeneous medium [18]. Correction factors to compute the induced near electric 

field E are introduced heuristically: 

cs = |
kL

kh
| = [

1

sin(
|kL|ld
2

)
]  (3.23) 

cfl =

{
 
 

 
 |

kL

kh
|

e
−0.002|

kh
kL
|
λ

ρ

1

     

for 0.75<|
kL
kh
|<0.95

for |
kL
kh
|<0.75

kL
kh
>0.95

  (3.24) 
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where 

- kL is wavenumber for the insulator (that accounts for the lossy dielectric 

medium surrounding antenna), 

- kh is the wavenumber of ambient lossy dielectric medium, 

- ld is the dipole length, 

- λ is wavelength, and 

- ρ is radial distance. 

Chaaban, Drissi, and Poljak [19] presented an analytical model for broadband Power 

line communication (PLC). The mathematical model for EMF calculation is based on 

integral equitation formulation in frequency domain, and approach assumed spatial 

current distribution. The PLC line is segmented into an infinite number of elementary 

dipoles (with positions at the point 𝑀0 (0,0, 𝑍0) through which the current 𝐼𝑀0(𝑠, 𝑍0) 

flows. Radial to the wire and tangential to the wire electric field components 

accompanied by an azimuthally component of the magnetic field expressed in terms of 

axially dependent magnetic vector potential: 

Ez = −
jω

β0
2 (
∂2Az

∂z2
+ β0

2Az)  (3.25) 

Eρ = −
jω

β0
2

∂2Az

∂ρ∂z
  (3.26) 

Hφ = −
1

μ0

∂Az

∂ρ
  (3.27) 

Az(p)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ =
μ0

4π
∫ I(p, z)

e−γ0R(z)

R(z)
dzez⃗⃗  ⃗

L

0
  (3.28) 

where 

- I(s, z0) is the current distribution along the conductor, and 

- R(z) = √ρ2 + (z − z0)2 is the distance between the elementary dipole and 

the observation point M, 

- γ0 =
jω

c
= jβ0 is the propagation constant in free space,  

- γ =
jω

v1
= jβ1 (γa ≪ 1) is the propagation constant of the PLC, 
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- c is the speed of light, and 

- v1 is the speed in line. 

This model is valid in near and far field and radiated fields are expressed only in terms 

of current and its derivatives (voltages) at the line ends. By using this model, the 

computational cost may be reduced. The advantages of their approach are rapid 

estimation of the phenomena simplicity, and possible reduction of computational cost. 

Prerequisite is knowing the values of the currents and voltages at the line ends [19]. 

The components of the time-varying EM field radiated by the line source with uniform 

current distribution located above a homogeneously dissipative ground were studied 

by Parise [40]. Total electric field generated in the air space has only one component 

in the axial direction. This component can be derived by decomposing into the direct 

field induced by the source current, the ideal reflected field induced by the negative 

image and a correction term due to the imperfect conductivity of the ground [40]. The 

advantage of this solution is that it is valid in case displacement currents in both the air 

and the soil are not negligible, and that requires less computation time than 

conventional numerical quadrature schemes used to evaluate Sommerfeld integrals. On 

the other hand the line source needs to have uniform current distribution. 

Nazari and Huang introduced a new method which breaks down the intermediate Hertz 

potential into three terms. The two term of the Hertz potential associated with the 

Sommerfeld integrals are expressed using hyperbolic functions, and the third term is 

approximated using Saddle Point Method (SPM) [41]. The disadvantage of SPM 

method is that is not capable of approximating Sommerfeld integrals since the 

Sommerfeld pole is close to the saddle point for this problem. 

As stated earlier one of the simplest scenarios which can be used to assess human 

exposure to HF radiation is one where the human body is exposed to the EMF radiated 

by a thin wire antenna. A simple dipole antenna combined with a simple human body 

model is often used for quick dosimetry procedures, aiming to get a rapid estimation 

of the phenomena. The analytical approach to incident field dosimetry of VED is given 

in Section 3.3 along with the related illustrative results. 

 

3.3 Incident dosimetry – Analytical procedures 

Within the thesis framework, the radiated electric field of a finite-length dipole antenna 

at any point of the upper half-space (as in Fig. 3.1) was obtained using:  

− a rigorous numerical approach,  

− an approximate numerical approach with an assumed current distribution, and  

− an approximate analytical approach.  
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Usually, the radiated electric field of a dipole antenna of finite length at any point of 

the upper half-space is calculated numerically. In doing so, the current distribution 

along the antenna is obtained by numerically solving the Pocklington equation using 

NEC [20]. The approximation for the solution of the current distribution along the wire 

segment in NEC can be written as follows 

Ij(a) = Aj + Bj sin (k(s − sj)) + Cj cos (k(s − sj)) , |s − sj| <
∆j

2
  (3.29) 

where 

- sj is the value of s at the center of segment j,  

- ∆j is the length of the segment,  

- Aj, Bj, and Cj are unknown constants. 

If the waveform of the current distribution along the wire can be assumed, under certain 

condition, by analytical expressions, including trigonometric functions as in [18, 19], 

solving the Pocklington equation can be avoided without significant loss of accuracy. 

Furthermore, if the field equitation is solved numerically approach is regarded as an 

approximate numerical approach with an assumed current distribution. On the other 

hand, if the field equitation is solved analytically approach is referred to as the as 

approximate analytical approach. The approximations for the antenna current used in 

this paper are sinusoidal, as in [54, 55] and triangular distribution: 

I(z′) =
sin(k(

L

2
−|z′−h|))

sin(k
L

2
)

  
(3.30) 

I(z′) =
2I0

L(
L

2
−|z′−h|)

  (3.31) 

where 

- I0 is the maximum value of the current distribution at a feeding point,  

- z′ is the position of the antenna where distribution is calculated, and  

- h is the height of the antenna above the half-space.  

For a person standing vertically on the ground, 𝐸𝑧 field component is relevant. The 

corresponding integral expression for 𝐸𝑧 can be obtained by combining (3.25) and 

(3.28). The scattered electric field is given by: 

Ez
sct =

1

jω4πε0
(
∂2

∂z2
+ k0

2) ∫ I(z′)g(z, z′)dz′
h+

L

2

h−
L

2

  (3.32) 
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As the first term in right-hand side of (3.32) is rather small in the far field zone, it can 

be neglected, and expression for the radiated electric field simplifies into: 

Ez
sct =

j

ω4πε0
k0
2 ∫ I(z′)g(z, z′)dz′

h+
L

2

h−
L

2

  (3.33) 

Now, inserting the relation for total Green function yields: 

Ez
sct =

1

jω4πε0
∫ I(z′)[g0(z, z

′) + RTM
F gi(z, z

′)]dz′ =
h+

L

2

h−
L

2

1

jω4πε0
∫ I(z′) [

e−jk0R0

r
+ RTM

F e−jk0R1

r1
] dz′

h+
L

2

h−
L

2

  
(3.34) 

where R0 and R1 according to Fig. 3.2 represent the distance from the source to the 

observation point: 

 

Figure 3.3 Fresnel approximation in far field zone 

R1 = r − hcos(θ)  (3.35) 

R1
 = r1 + hcos(θ1)  (3.36) 

θ1 =
acot(h − z′)

x
 (3.37) 

θ2 =
acot(h + z′)

x
 (3.38) 
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while r and r1 represent distances from the center of the antenna to the observation 

point: 

r = √x2 + y2 + (h − z)2  (3.39) 

r1 = √x2 + y2 + (h + z)2  (3.40) 

In this manner, distance to the observation point is kept constant thus simplifying the 

integration, while at the same time phase shift is taken into account rigorously.  

Within the framework of the thesis, for approximate numerical approach with assumed 

current distribution, a procedure for numerical solution of the field integral is 

developed. Based on assumed sinusoidal and triangular current distribution 

respectively the corresponding integral expressions for the tangential to the wire field 

are given by 

Ez
sctS = jω4πε0 [

∂2

∂z2
+ k0

2] ∫
sin(k(

L

2
−|z′−h|))

sin(k
L

2
)

h+
L

2

h−
L

2

  

(g0(z, z
′) −

ncosθ− √n−sin2 θ

ncosθ+ √n−sin2 θ
gi(z, z

′)) dz′  

(3.41) 

Ez
sctT = jω4πε0 [

∂2

∂z2
+ k0

2] ∫
2I0

L(
L

2
−|z′−h|)

(g0(z, z
′) − gi(z, z

′))dz′
h+

L

2

h−
L

2

  (3.42) 

When used in proper conditions, approximate numerical approach with assumed 

current distribution saves time and computer resources since it bypasses solving the 

Pocklington equation. 

Integrating expression (3.34) with the assumption of a triangular current distribution 

and Fresnel reflection coefficient yields an simple expression for the total electric field 

at the observation point, while can be for convivence written as follows 

Ez
sctT =

1

jω4πε0
[(T11 + T12) + RTM

F T21 + T22] (3.43) 

where 𝑇11, 𝑇12, 𝑇21,  and 𝑇22 are exponential functions of h, L, 𝑐𝑜𝑠(𝜃), and 𝑐𝑜𝑠(𝜃1), 

and 𝑅𝑇𝑀
𝐹  is Fresnel reflection coefficient. The coefficients used in (3.43) are given in 

Table 3.1. 
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Table 3.1 Coefficients used in (3.43) 

T11 
−

2I0

rLk0
2cos2(θ)

e−jk[r−hcos(θ)] {e−jk[(h+
L
2
) cos(θ)] + e−jk[(h−

L
2
) cos(θ)]} 

T12 
4I0

rLk0
2cos2(θ)

e−jk[r−hcos(θ)]e−jk[hcos(θ)] 

T21 −
2I0

r1Lk0
2cos2(θ1)

e
−jk[r1+hcos(θ1)]{e

jk[(h+
L
2
) cos(θ1)]+e

jk[(h−
L
2
) cos(θ1)]}

 

T22 
4I0

r1Lk0
2cos2(θ1)

e−jk[r1+hcos(θ1)]ejk[h cos(θ1)] 

RTM
F  

ncosθ − √n − sin2 θ

ncosθ + √n − sin2 θ
 

In a similar way, a simple expression for the total electric field at the observation point 

with the assumption of a sinusoidal current distribution and Fresnel reflection 

coefficient is obtained. The electrical field can be written in the form 

Ez
sctS =

1

jω4πε0sin
k0L
2

 [S11 + S12 + S13 + S14 + 

RTM
F (S21 + S22 + S23 + S24)]  

(3.44) 

where 𝑆11, 𝑆12, 𝑆13, 𝑆14,𝑆21, 𝑆22, 𝑆23, 𝑆24 are exponential functions of h, L, cos(𝜃), and 

cos(𝜃1) (Table 3.2). 

Table 3.2 Coefficients used in (3.44) 

S11 
I0

2rk(cos (θ)+1)
e−jk[r−hcos(θ)] {e−jk[(h+

L

2
) cos(θ)] + e−jk[(h−

L

2
) cos(θ)]}  

S12 −
I0cos (

k0L

2
)

rk(cos (θ)+1)
e−jk[r−hcos(θ)]e−jk[hcos(θ)]  

S13 
I0

2rk(−cos (θ)+1)
e−jk[r−hcos(θ)] {e−jk[(h+

L

2
) cos(θ)] + e−jk[(h−

L

2
) cos(θ)]}  

S14 −
I0cos (

k0L

2
)

rk(−cos (θ)+1)
e−jk[r−hcos(θ)]e−jk[hcos(θ)]  
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S21 
I0

2r1k(cos (θ1)+1)
e−jk[r1+hcos(θ1)] {ejk[(h+

L

2
) cos(θ1)] + ejk[(h−

L

2
) cos(θ1)]}  

S22 −
I0cos (

k0L

2
)

r1k(cos (θ1)+1)
e−jk[r1+hcos(θ1)]ejk[h cos(θ1)]  

S23 
I0

2r1k(−cos (θ1)+1)
e−jk[r1+hcos(θ1)] {ejk[(h+

L

2
) cos(θ1)] + ejk[(h−

L

2
) cos(θ1)]}  

S24 −
I0cos (

k0L

2
)

r1k(−cos (θ1)+1)
e−jk[r1+hcos(θ1)]ejk[h cos(θ1)]  

 

3.4  Results for current distribution and irradiated field 

In this section results obtained via a rigorous numerical approach, an approximate 

numerical approach with an assumed current distribution, and an approximate 

analytical approach are presented. Nominal values of used parameters are shown in 

Table 3.3. 

Table 3.3 Nominal valued of VED and VED environment 

Parameter Nominal Value 

Physical Length L=0.01 m 

Radius a=0.1 mm 

Operational frequency f=3 GHz 

Height above ground h=20 m 

Relative permittivity of dry, sandy and costal 

ground 
𝜀𝑟 = 10 

Conductivity of dry, sandy and costal ground 𝜎 = 1 
mS

m
. 

The maximum current applied to the gap in the 

center of the antenna 
𝐼0 =1 A 

Fig. 3.3 shows the current distribution along a vertical dipole antenna above a lossy 

half-space at a height of h=20 m above the ground. Blue curve shows the current 

distribution obtained by means of rigorous numerical approach, red by means of 
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approximate approach with triangular current distribution, and finally, green by using 

the approximate approach with assumed sinusoidal current distribution along the wire. 

 

Figure 3.4 Current distribution on a VED above a lossy half-space at h=20m, 

maximum current in the center of the antenna 𝐼0 =1 A, physical length L=0.01 m, 

and f=3 GHz 

Absolute difference between approximate and actual current distribution is below 11 

%, and disappears in narrow bend around the centre of the dipole (where the source is 

located). The difference between approximate and actual current distribution at the end 

of VED is below 4 %. The difference in current distribution increases as the current 

approaches its maximum value (in the canter of the dipole). As the maximum 

difference is below 11 %, the assumed current distribution (triangular or sinusoidal) is 

acceptable in this case.  

The results for the radiated field obtained using rigorous numerical approach are 

obtained using NEC [20]. The radiated electric field is calculated in the upper medium 

from an observation point fixed in a horizontal direction (x=200 m, y=0 m) away from 

the antenna (which corresponds to a far field zone), while in the vertical direction z 

changes from 0 m to 1.8 m above ground. Following antenna heights are of interest: 

1m, 10 m and 20 m. The absolute value of the electric field radiated in the air versus 

point location in the z-axis for a fixed distance from the source in an x horizontal 

direction x = 200 m and at an antenna height of 1 m above are shown in Fig. 3.4, 10 m 

in Fig. 3.5, and 20 m in Fig. 3.6.  

Fig. 3.4 to Fig. 3.6 contain curves obtained via rigorous numerical approach and by 

using the approximate approach with sinusoidal and triangular current distribution. 
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Figure 3.5 The absolute value of the electric field radiated in the air versus point 

location in the z-axis for a fixed distance from the source in an x horizontal 

direction x=200 m, frequency f=3 GHz, 
𝐿

𝜆
=
1

4
, and at antenna height h=1 m 

above ground 

 

 

Figure 3.6 The absolute value of the electric field radiated in the air versus point 

location in the z-axis for a fixed distance from the source in an x horizontal 

direction x=200 m, frequency f=3 GHz, 
𝐿

𝜆
=
1

4
, and at antenna height h=10 m 

above ground 
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Figure 3.7 The absolute value of the electric field radiated in the air versus point 

location in the z-axis for a fixed distance from the source in an x horizontal 

direction x=200 m, frequency f=3 GHz, 
𝐿

𝜆
=
1

4
, and at antenna height h=20 m 

above ground 

It can be observed that the maximum absolute difference between the electric field 

radiated in the air and at antenna height of 1 m above ground via the rigorous and 

approximate approaches, respectively is less than 0.4 % (Fig. 3.4). Also, the maximum 

absolute difference between the electric field radiated in the air at antenna heights of 

10 m and 20 m above ground via rigorous and approximate approaches is less than 0.6 

% (Fig. 3.5 and Fig. 3.6). Analysing the results for the tangential to the wire electric 

field component calculated via different approaches it is visible from Fig. 3.4, Fig. 3.5, 

and Fig. 3.6 that the waveforms obtained by different approaches agree satisfactorily 

for all height values. Discrepancies appear at the peaks. The number of lobes of electric 

field increases as h increases. When the height of the antenna above the ground is large 

enough in relation to the wavelength (in our case at least 10 times) a further increase 

in height will not affect the change of the radiated electric field. 

The impact of ration 
𝐿

𝜆
 on irradiated electrical field is shown in Fig. 3.6, Fig. 3.7, and 

Fig. 3.8. The absolute value of the electric field radiated in the air versus point location 

in the z-axis for a fixed distance from the source in an x horizontal direction 𝑥 = 200 m 

and of 
𝐿

𝜆
=

1

10
 is shown in Fig. 3.6, 

𝐿

𝜆
=
1

4
  in Fig. 3.7, and 

𝐿

𝜆
=
1

2
 in Fig. 3.8.  

Fig. 3.6 to Fig. 3.8 contain curves obtained via rigorous numerical approach and 

approximate numerical approach with sinusoidal and triangular current distribution. 
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Figure 3.8 The absolute value of the electric field radiated in the air versus point 

location in the z-axis for a fixed distance from the source in an x horizontal 

direction x=200 m, frequency f=3 GHz, at antenna height h=20 m above ground, 

and 
𝐿

𝜆
=
1

4
 

 

 

Figure 3.9 The absolute value of the electric field radiated in the air versus point 

location in the z-axis for a fixed distance from the source in an x horizontal 

direction x=200 m, frequency f=3 GHz, at antenna height h=20 m above ground, 

and 
𝐿

𝜆
=
1

2
 

The Fig. 3.6 to Fig. 3.8 clearly show that the value of the field increases as the 
𝐿

𝜆
 

increases. In other words, physically large antennas produce a larger electric field. The 

maximum value of electric field increases from 0.07 
V

m
 to 0.5 

V

m
 when 

𝐿

𝜆
 increases from 

0.1 to 0.5. On the other hand, absolute differences between electric field values of 
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models with assumed and real current distribution decreases when 
𝐿

𝜆
 decreases. In other 

words when the antenna is electrically small enough these models give the results 

which differ the most at the peak values, but difference is less than 1 % in this case. As 
𝐿

𝜆
 increases the difference also increases.  

It should be noted that in all cases the biggest difference between electric field values 

is observed at the peak values. Also, the values of numerical model with assumed 

current distribution are smaller because model uses far field approximation (only first 

term in Pocklington equitation), while rigorous numerical model calculates far field 

using both terms of integral expression (3.12). This leads to the conclusion that for 

electrically small antennas (
𝐿

𝜆
 < 0.1) models with assumed and calculated current 

distribution give similar results. In other words, in such conditions, the model with 

assumed current distribution gives satisfactory results.  

The absolute value of the electric field radiated in the air versus point location in the z-

axis for a fixed distance from the source in an x horizontal direction x = 200 m and at 

an antenna height of 10 m above are shown in Fig. 3.9 and Fig. 3.10, and 20 m in Fig. 

3.11 and Fig. 3.12.  

Fig. 3.9 to Fig. 3.12 contain curves obtained via numerical and analytical approach 

with sinusoidal and triangular current distribution and obtained via rigorous numerical 

approach. 

 

Figure 3.10 The absolute value of the electric field radiated in the air versus 

point location in the z-axis for a fixed distance from the source in an x horizontal 

direction x=200 m, f=3 GHz, at antenna height h=10 m above ground, 
𝐿

𝜆
=

1

10
, 

and sinusoidal current distribution 
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Figure 3.10 The absolute value of the electric field radiated in the air versus 

point location in the z-axis for a fixed distance from the source in an x horizontal 

direction x=200 m, f=3 GHZ, at antenna height h=10 m above ground, 
𝐿

𝜆
=

1

10
, 

and triangular current distribution 

 

 

Figure 3.11 The absolute value of the electric field radiated in the air versus 

point location in the z-axis for a fixed distance from the source in an x horizontal 

direction x=200 m, f=3 GHz, at antenna height h=20 m above ground, 
𝐿

𝜆
=

1

10
, 

and sinusoidal current distribution 
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Figure 3.12 The absolute value of the electric field radiated in the air versus 

point location in the z-axis for a fixed distance from the source in an x horizontal 

direction x=200 m, f=3 GHZ, at antenna height h=20 m above ground, 
𝐿

𝜆
=

1

10
, 

and triangular current distribution 

Previously mentioned lobbying effect is clearly noticeable from Fig. 3.9 to Fig. 3.12. 

The maximum value of the radiated electric field is the same for heights of 10 m and 

20 m and for numerical and analytical approach. Maximal values are higher for 

analytical and numerical approach when compared to rigorous numerical model.  

The difference between field values for analytical and numerical approach with 

assumed current distribution compared to rigorous numerical approach increases, 

being maximal at curves maxima. There is no difference in the field values obtained 

by assuming sinusoidal or triangular current distribution on the antenna. The field 

waveforms for the analytical and numerical approach totally agree, with the largest 

difference compared to rigorous numerical approach being noticeable in the region of 

the maximum. 

At height of 10 m and 20 m respectively above the ground, the maximum absolute 

difference between field radiated in the air by analytical and approximate numerical 

approach compared to rigorous numerical approach is less than 1 %. Thus, the models 

based on approximate approach agree satisfactorily with the rigorous numerical model.  

The impact of 
𝐿

𝜆
 on electrical field is shown in Fig. 3.11 to Fig. 3.16. The absolute value 

of the field radiated in the air versus point location in the z-axis for a fixed distance 

from the source in an x horizontal direction x=200 m and of 
𝐿

𝜆
=

1

10
 is shown in Fig. 

3.11 and Fig. 3.12, 
𝐿

𝜆
=
1

4
 in Fig. 3.13 and Fig 3.14, and 

𝐿

𝜆
=
1

2
 in Fig. 3.15 and Fig 3.16. 
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Figure 3.13 The absolute value of the electric field radiated in the air versus 

point location in the z-axis for a fixed distance from the source in an x horizontal 

direction x=200 m, f=3 GHz, at antenna height h=20 m above ground,  
𝐿

𝜆
=
1

4
, 

and sinusoidal current distribution 

 

 

Figure 3.11 The absolute value of the electric field radiated in the air versus 

point location in the z-axis for a fixed distance from the source in an x horizontal 

direction x=200 m, f=3 GHz, at antenna height h=20 m above ground, 
𝐿

𝜆
=
1

4
, and 

triangular current distribution 
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Figure 3.15 The absolute value of the electric field radiated in the air versus 

point location in the z-axis for a fixed distance from the source in an x horizontal 

direction x=200 m, f=3 GHz, at antenna height h=20 m above ground, 
𝐿

𝜆
=
1

2
, and 

sinusoidal current distribution 

 

 

Figure 3.16 The absolute value of the electric field radiated in the air versus 

point location in the z-axis for a fixed distance from the source in an x horizontal 

direction x=200 m, f=3 GHz, at antenna height h=20 m above ground,  
𝐿

𝜆
=
1

2
, 

and triangular distribution 

Fig. 3.11 to Fig.3.16 clearly show that the field increases as the ratio of physical length 

and wavelength increase. In other words, physically large antennas generate a larger 

electric field. The maximum value increases from 0.07  
V

m
 to 0.45 

V

m
 when 

𝐿

𝜆
  increases 

from 
1

10
 to 

1

2
 for analytical and numerical model with sinusoidal current distribution, 
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and from 0.07 
V

m
 to 0.35 

V

m
 when the 

𝐿

𝜆
  increases from 

1

10
 to 

1

2
 for analytical and 

numerical model with triangular current distribution. The maximum value increases 

from 0.065 
V

m
 to 0.47 

V

m
 when the 

𝐿

𝜆
 increases from 

1

10
 to 

1

2
 for rigorous numerical 

approach. 

As 
𝐿

𝜆
 increases, the difference between field values also increases for sinusoidal and 

triangular current distribution. It should be noted that in all cases the largest difference 

between field values is observed at the peaks and it is larger for approximate models 

with triangular current distribution compared to sinusoidal current distribution. The 

maximum absolute difference between absolute electric field values radiated in the air 

by approximate numerical approach and analytical approach with assumed current 

distribution is less than 2 % compared to rigorous numerical approach for 
𝐿

𝜆
=

1

10
. 

For electrically middle-sized antennas (
𝐿

𝜆
~
1

4
) the maximum absolute difference 

between field values radiated in the air by numerical and analytical approach with 

assumed triangular current distribution is less than 5 % for 
𝐿

𝜆
=
1

4
. Further on, the 

maximum absolute difference between absolute electric field values radiated in the air 

by rigorous numerical approach with assumed sinusoidal current distribution is less 

than 5 % for 
𝐿

𝜆
=
1

2
, and with assumed triangular current distribution is less than 15 % 

for 
𝐿

𝜆
=
1

2
. 

Consequently, for electrically larger antennas the approximation with triangular 

current distribution should be avoided and more accurate results can be obtained by 

using the sinusoidal current distribution. This leads to the conclusion that for 

electrically small antennas (
𝐿

𝜆
≤

1

10
) approximate analytical and numerical approach, 

respectively provides satisfactory results for sinusoidal and triangular current 

distribution. 

Fig. 3.17 to Fig. 3.20 clearly show that the field decreases as the distance from the 

source increases (from 20 m to 200 m). 
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Figure 3.17 The absolute value of the electric field radiated in the air versus 

point location in the x-axis for a fixed distance in an z vertical direction z=0.25 

m, f=3 GHz, at antenna height h=20 m above ground, 
𝐿

𝜆
=

1

10
, and sinusoidal 

current distribution 

 

 

Figure 3.18 The absolute value of the electric field radiated in the air versus 

point location in the x-axis for a fixed distance in an z vertical direction z=0.75 

m, f=3 GHz, at antenna height h=20 m above ground, 
𝐿

𝜆
=

1

10
, and sinusoidal 

current distribution 
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Figure 3.19 The absolute value of the electric field radiated in the air versus 

point location in the x-axis for a fixed distance in an z vertical direction z=1.25 

m, f=3 GHz, at antenna height h=20 m above ground, 
𝐿

𝜆
=

1

10
, and sinusoidal 

current distribution 

 

 

Figure 3.20 The absolute value of the electric field radiated in the air versus 

point location in the x-axis for a fixed distance in an z vertical direction z=1.75 

m, f=3 GHz, at antenna height h=20 m above ground, 
𝐿

𝜆
=

1

10
, and sinusoidal 

current distribution 

The maximum value of electric field is 0.46 
V

m
 (for approximate numerical and 

analytical model) and 0.23 
V

m
 (for rigorous numerical approach) and it is obtained at 

point (20 m, 0 m, 1.75 m). The field amplitude approaches the same value as x increases 

for both models. In all analyzed scenarios, the absolute value of the electric field 

radiated in the air drops below 0.2 
V

m
 when the distance in the horizontal direction 
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increases to 40 m. When the distance in the horizontal direction is above 60 m these 

three models agree satisfactorily.  

For small distances in the horizontal direction (x<40 m), due to the far field 

approximation used in proposed model, the significant overestimation of the field 

values could be observed. The results of rigorous numerical approach obtained from 

NEC consider the formulations for EMF in near field, meaning that they include the 

terms 
1

R2
 and 

1

R3
. Our analytical solution is based on far field approximation, and takes 

only field dependence of term 
1

R
, which is his main limitation. 

The absolute value of the electric field radiated in the free space versus point location 

for z = 1.75 m and sinusoidal current distribution is shown in Fig. 3.21. 

 

Figure 3.21 The absolute value of the electric field radiated in the free space 

versus point location in the x-axis for a fixed distance in an z vertical direction 

z=1.75 m, f=3 GHz, 
𝐿

𝜆
=

1

10
and sinusoidal current distribution 

There are no differences between the field values radiated in free space by the 

approximate numerical approach and the analytical approach with assumed current 

distribution. And the difference between the mentioned approaches is very small 

compared to the rigorous numerical approach. In other words, the results of the 

proposed analytical approach almost completely agree with the results of approximate 

numerical approach with assumed current distribution and the results of rigorous 

numerical approach in free space.  

Comparing the results between the rigorous formulation and far field approximation in 

the case of the free space and a lossy media clearly demonstrates that the presence of 

the lossy ground somehow expands the near field region thus reducing the accuracy of 

proposed procedure. 
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The absolute value of the electric field radiated in the air versus point location in the 

x-axis for a fixed distance in an z vertical direction z=1.75 m and at an antenna height 

of h=20 m above and frequency f=6 GHz is shown in Fig. 3.22. 

 

 

Figure 3.22 The absolute value of the electric field radiated in the free space 

versus point location in the x-axis for a fixed distance in an z vertical direction 

z=1.75 m, f=6 GHz, at antenna height h=20 m above ground, 
𝐿

𝜆
=

1

10
, and 

sinusoidal current distribution 

 

There are no differences between the field values obtained by the approximate 

numerical approach and the analytical approach with assumed current distribution at 

frequency f=6 GHz compared to f=3 GHz. And the difference between the mentioned 

approaches is very small compared to the rigorous numerical approach, but higher at 

f=6 GHz compared to f=3 GHz.  

The absolute value of the field radiated in the air versus point location in the x-axis for 

a fixed distance in an z vertical direction z=1.75 m and at an antenna height of 20 m 

above and ground conductivity 𝜎 = 1
mS

m
 and 𝜎 = 1000

S

m
 is shown in Fig. 3.23. 
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Figure 3.23 The absolute value of the electric field radiated in the free space 

versus point location in the x-axis for a fixed distance in an z vertical direction 

z=1.75 m, f=3 GHZ, at antenna height h=20 m above ground, 
𝐿

𝜆
=

1

10
, and 

sinusoidal current distribution 

The absolute value of the field radiated in the air versus point location in the x-axis for 

a fixed distance in an z vertical direction z=1.75 m and at an antenna height of h=20 m 

above the ground and relative ground permittivity 𝜀𝑟 = 10 and 𝜀𝑟 = 150 is shown in 

Fig. 3.24. 

 

Figure 3.24 The absolute value of the electric field radiated in the free space 

versus point location in the x-axis for a fixed distance in an z vertical direction 

z=1.75 m, f=3 GHz, at antenna height h=20 m above ground, 
𝐿

𝜆
=

1

10
, and 

sinusoidal current distribution 
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There are no differences between the field values obtained by the approximate 

numerical approach and the analytical approach with assumed current distribution 

obtained for different electric conductivity and relative ground permittivity.  

 

3.5 Chapter summary 

Comparison of the results for the irradiated electric fields obtained for rigorous 

numerical approach, approximate numerical approach with assumed current 

distribution and analytical approach for different values of the model parameters, 

allows to define the conditions in which the approximate approaches can be applied. 

When used in proper conditions, approximate approaches with assumed current 

distribution saves time and computer resources as it avoids the solving of the 

Pocklington equation, and in the case of the analytical approach the field integral. In 

conclusion, when the height of the antenna above the ground is less than 200 ∗ 𝜆 the 

results obtained via the approximate analytical and numerical approach agree 

satisfactorily. 

According to the results of the comparison, both models give similar results when the 

vertical dipole antenna is electrically short (𝐿 ≤
λ

10
) and when the ratio of the height of 

the antenna above the ground compared to the wavelength meets the condition ℎ ≥

10λ. The results obtained on the basis of the previous two approaches are also valid in 

the near field, which means that they include the terms 
1

R2
 and 

1

R3
 . 

Note that the analytical solution is based on the far-field approximation and takes only 

the dependence 
1

R
. By comparing the results for all three approaches, an additional 

limitation is imposed in the form of distance in the horizontal direction x > 60 m. For 

smaller distances in the horizontal direction (𝑥 < 40 m), due to the far-field 

approximation used in the proposed analytical model, significant difference in the field 

values can be observed compered to rigorous and approximate analytical approach with 

assumed current distribution. Therefore, the presence of lossy soil widens the near-

field region, thus limiting the applicability of the proposed procedure. 
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CHAPTER 4 

Internal electromagnetic dosimetry for canonical body 

models 

 

4.1 Coupling between external and internal fields 

Internal dosimetry requires knowledge of the dielectric properties of tissue, tissue 

geometry and size, tissue orientation and field polarization, field frequency, source 

configuration, exposure environment, and time-intensity factors [56]. Information about 

dielectric properties of tissue and its influence on resulting EM filed inside the body are 

discussed in Section 2.1. Human tissue is multi-layer and fat thickness, tissue curvature, 

and dimensions of the body, limbs, and head relative to the wavelength all affect the 

energy distribution. External field intensity and exposure duration are important 

parameters that determine the total energy absorbed by tissues [56]. 

It has been shown both theoretically [32], and experimentally [57] that SAR in an exposed 

person is maximal when the long axis of the body is parallel to the direction of a uniform 

external electric field. In addition to the frequency dependence of dielectric properties, the 

strength and spatial distribution of internal fields also vary with frequency [32]. Source 

configuration depends on source-human body distance, and two configurations appear: far 

field (there is no interaction or “coupling” between the source and the object) and near 

field (energy coupling depends on the source shape and size) [56]. Environmental factors 

affecting EM exposure encompass free space, on a ground plane, near metal reflectors, or 

in an electrically conductive structure, such as a resonant cavity or waveguide [57]. 

Having in mind that the induced electric field is the main driver of biological processes 

that will eventually occur in the human body as a result of exposure to EM radiation, 

establishing a mathematical relationship between incident and induced electric field is the 

next step in EM dosimetry procedure. Induced electric field inside the body has the same 

direction as the external field but is reduced in strength. 

Geometrical complexity and inhomogeneous nature make the mathematical 

representation of the human body rather challenging. In the early beginning of dosimetric 

calculations models such as spheres, prolate spheroids, block models (cubical 

mathematical cells arranged in a shape like a human body), have been used to assess the 

absorbed energy during plane wave irradiation [32]. The relationship between human 

height and the wavelength at the resonance frequency is originally derived on prolate 

spheroid or a homogeneous block model [8]. 



48 

Canonical body models are used by different authors, such as a cylinder [25, 48, 58-60] 

or a parallelepiped [61, 62]. These planar models do not represent humans with high level 

of uncertanity, but provide some basic understanding of energy-absorption properties. 

When a plane wave is incident on a planar electrically lossy object, the wave transmitted 

into the object attenuates as it travels and transfers energy to the object. The more lossy 

the object, the more rapidly the wave attenuates.  

High resolution, to order of a millimeter or finer, and detailed numerical human models 

can be used today due to the aid of powerfull computers. Some realistic human body 

models are used in [63-70]. However, these models have a rather high computational cost, 

while simplified ones are computationally much less expensive, but fail to ensure accurate 

results in most scenarios [26].  

Analytical methods of EM dosimetry are usually applied to simplified human body 

models. Some theoretical dosimetry basics, with short literature review and general 

aspects in numerical and experimental internal EM dosimetry are also covered. 

 

4.2 Theoretical dosimetry basics 

Generally, EM dosimetry relies on analytical, numerical or experimental techniques. 

Analytical methods can be used in canonical models. Numerical dosimetry makes use of 

computational techniques on digital computers to handle realistic body models, while 

experimental dosimetry uses instrumentation and measurements to directly measure the 

dosimetric quantities. 

Although, early research in this field proposed the use of current density in tissue, or an 

internal electric field, a mass-normalized rate of energy absorption was introduced in the 

late 1960s. The first organization that adopted SAR as the fundamental dosimetry 

parameter for the RF exposure safety standard was the American National Standards 

Institute (ANSI) [56]. 

HF dosimetry uses SAR in the frequency region of 100 kHz to 6 GHz. Above this 

transition frequency APD is used [3]. SAR is defined as the rate of energy absorbed by or 

dissipated in human body unit mass: 

SAR =
d

dt

dW

dm
=

d

dt

dW

ρdV
= C

dT

dt
  (4.1) 

Also, in terms of internal field we have 
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SAR =
σ|E| 

2

2ρ
=

J 
2

σρ
  (4.2) 

where 

- W is absorbed energy [J], 

- m is the mass of the tissue [kg], 

- J is induced current density in tissue [
A

m2
], 

- ρ describes the mass density of human tissue [
gr

cm3
], 

- σ represents the tissue conductivity, 

- Erms
  the root mean square of the electric field strength, 

- C is the specific heat capacity of tissue [
J

kgK
], 

- T is the temperature [℃], and  

- t denotes time [s]. 

Furthmore, two metrics are most often determined: SARWB and local SAR. SARWB is 

defined as the total EM power absorbed by a body divided by its mass, and it is one value 

that represents the magnitude of spatially averaged SAR throughout an exposed biological 

object [56]. SARWB is given by: 

SARWB =
1

V
∫ SARsurfdV
 

V
  (4.3) 

where 

- V is the volume of the human body [m3], and 

- SARsurf is the surface SAR value assumed to decrease exponentially through the 

human body, as follows 

SARsurf = SAR0e
−
2x

δ   (4.4) 

where 

- SAR0 is the intensity of SAR at the surface as a function of depth x [
W

kg
], 

- x is depth, and 

- δ is the is the penetration depth. 

Local SAR is defined as SAR averaged over any cube inside the body with a tissue mass 

of 1 g (SAR1g) or 10 g (SAR10g). The distribution of the local SAR values can be directly 

calculated from the electric field distribution [71].  
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SAR =
σ|E| 

2

ρm
  (4.5) 

SAR10g is obtained by averaging the maximum SAR of the points within the 10 g volume 

and this calculation is performed until it covers the whole sample volume. The same 

principle is applied for computing the SAR within the 1 g volume covering the whole 

volume. The SAR (10 g or 1 g) value may be subsequently calculated considering the 

contribution of the smaller cube and the contribution of the cubical shell around it each 

with a predefined weighting coefficient using (4.5) [71]:  

SAR10gor SAR1g =
∑ SARimi+∑ SARjmjv2−v1v1

∑ mi+∑ mjv2−v1v1
  (4.6) 

where 

- mi = ρi∆V is the mass of 10 g cell or 1 g cell, 

- mj = Pj∆V
10−V1

V2−V1
 for 10 g cell and mj = Pj∆V

1−V1

V2−V1
, 

- index i refers to the lattice cells inside the inner cube, and  

- index j to those around it. 

Evaluation of the maximum local SAR is particularly important when a part of the human 

body is exposed to EM radiation from nearby sources. An example of such a scenario, is 

the estimation of SAR distribution throughout a human head during the use of cellular 

telephones. Both SAR types are averaged during a certain period of time. 

According to ICNIRP for frequencies below 6 GHz and above 100 kHz, SAR should be 

used, while for frequencies in the range 6 GHz to 300 GHz APD should be used as the BR 

for the human exposure to EMFs.  

APD is defined at the body surface, averaged over the tissue area of interest, A [72].  

Sab =
1

2A
∬ ℜ(S⃗ )ds 
 

A
  (4.7) 

where 

- S⃗ = E⃗⃗ xH⃗⃗ ∗ is the Poynting vector yields a direction of the electromagnetic wave 

propagation, and 

- ds  is variable vector normal to the integral area A. 

APD for the general public should be restricted to 20 
W

m2
, averaged over 6 min and over a 

4 cm2 area. In addition to SAR and APD the metric TPD to the skin surface or epithelial 

power density is defined as [55] 
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TPD(x, y) =
1

2
∫ σ(r)|E(r)|2dz  (4.8) 

where 

- |E(r)| is the peak value of the electric field at position r, 

- σ is the conductivity of human tissue, and 

- r is the direction perpendicular to the human body surface.  

TPD corresponds to integrated SAR over the depth direction. In the far-field region, wave 

propagation is spherical in nature and TPD decays as 
1

r2
, where r is the distance from the 

antenna. In guidelines and standard SAR10g and Incident Power Density (IPD) are 

considered as metrics, but TPD at the surface is also evaluated in [55]. Therefore, 

depending of operational frequency different internal dosimetric quantity are used. 

 

4.2.1 Literature review 

SAR distributions is usually determined from measurements in human phantoms, in 

animal tissues, but primarily from calculations. For SAR calculation different simple and 

complex human body models are used e.g. [21,62,73]. Some experimental techniques that 

are commonly used to determine SAR distribution are presented in [56, 74].  

Study [8] proposes an equation for estimating SARWB in human body models (NORMAN, 

NAOMI and BAFB) for plane wave exposure at whole-body resonance frequency. The 

finite-difference time-domain (FDTD) method is used to calculate the EM power absorbed 

in these models. The dominant factors influencing the resonance frequency of the human 

body models are investigated for plane wave exposures. According to results of this study, 

the uncertainty of the SARWB estimated with the proposed equation is approximately 10 

%, which is mainly attributed to the electrical constants of tissue, including the 

inhomogeneity of the human body model. The variability of the SARWB due to the body 

shape was found to be 30 % for humans of the same age.  

SARWB in simplified parallelepiped model due to radiation of RFID anti-theft antenna 

gate system (13.56 MHz) is analysed in [62]. The SARWB is calculated for the two cases: 

human being is in the center of the antenna gate system, and human standing beside the 

gate. The obtained SARWB values are found to be below the ICNIRP exposure limits. 

Authors from [21] propose an estimation of SARWB for far field exposure of an isolated 

human body in the frequency range of 10 MHz to 200 MHz. Human body is modelled as 

a lossy homogenous cylindrical antenna. Equations for the total induced axial current and 

the SARWB based on a rigorous treatment of cylindrical antenna theory are derived. The 
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expression for the total induced axial current is derived based on the thin-wire 

approximation. The calculated SARWB is in excellent agreement with the FDTD results in 

chosen frequency range. The calculated axial current for higher frequencies becomes less 

accurate, which further results in divergence of calculated SARWB values from the FDTD 

results for frequencies above 150 MHz. 

An analytical method for calculation of the EM absorption in human tissue based on the 

wave matrix method is proposed in [73]. The method is applied to determine the electrical 

field and SAR in a planar multi-layer structure exposed to a linearly polarized plane wave 

in the frequency band between 0.1 GHz and 10 GHz. The results of the proposed analytical 

method are validated by comparing them to the outcome of a full wave solver using the 

finite integration technique (FIT). According to the results SARWB reaches its peak at 3 

GHz in the skin and the muscle tissue, and for 𝑓 > 3 GHz high SARWB values are only 

present in the skin layer.  

In the international guidelines for human protection, used metric to prevent excessive 

surface temperature elevation at frequencies up to 3 GHz or 10 GHz is SAR. IEEE-Std 

C95.1-2019 and ICNIRP-RF Guidelines – 2020 have merged towards 6 GHz as transition 

frequency from specific absorption rate (SAR) to IPD - pertaining to free space, and APD 

- pertaining to the skin surface [55]. 

The results for the induced field and the APD at the surface of planar multi-layer model 

of the human tissue obtained by means of analytical/numerical approach are given in [75]. 

The multi-layer model is exposed to radiation of dipole antenna, and the influence of 

multi-layer domain is taken into account via Fresnel plane wave reflection/transmission 

approximation. Numerical procedures are based on Galerkin-Bubnov Indirect Boundary 

Element Method (GB-IBEM). In 2-layer model (composed of skin and muscle) the field 

values obtained using analytical and numerical approach agree satisfactory. Further on, 

APD decreases as antenna moves away from interface. If the distance between the tissues 

and the antenna is fixed, then a slow increase of APD with frequency is observed. In 3-

layer model (composed of skin, fat and muscle) the field values obtained using analytical 

and numerical approach agree satisfactory. APD behavior is the same as in the 2-layer 

model. 

Since the IPD is a reference level, effectiveness of a new metric, TPD at the skin, for the 

estimation of steady-state skin temperature elevation above the transition frequency (3 

GHz or 10 GHz) was discussed in [76]. Authors concluded that the TPD provides an 

excellent estimate of skin temperature elevation through the millimetre wave band (30 

GHz to 300 GHz) and a reasonable and conservative estimate down to 10 GHz.  

The results of analytical and numerical modelling of the impact of antenna/human body 

interactions on the TPD, using a skin-equivalent model are presented in [77]. Results from 

this study demonstrate that the presence of the body in the vicinity of a source results in 
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an increase in the average TPD. The variations are higher for wet skin (up to 98.25 %) 

and for children (up to 103.3 %). These results suggest that the exact distribution of TPD 

cannot be retrieved from measurements of the IPD in free space in absence of the body.  

The results for the transmitted field, volume power density (VPD) and TPD in flat human 

tissue model exposed to the radiation of dipole antenna are presented in the study [55]. 

Human tissue is represented by muscle properties and a frequency of interest were 𝑓 =

 6 GHz, 𝑓 =  10 GHz, 𝑓 =  30 GHz, and 𝑓 =  60 GHz. The influence of two-media 

interface is taken into account via the Fresnel plane wave reflection/transmission 

approximation. Numerical procedures pertain to GB-IBEM. VPD practically vanishes for 

shorter wires. TPD penetrates faster through the tissue for higher frequencies and rapidly 

goes to saturation, as well. 

 

4.3 Approach to internal electromagnetic dosimetry 

4.3.1 Experimental and numerical approach 

Experimental and numerical dosimetry techniques can be used to assess internal fields for 

different sources and geometries. Numerical dosimetric approach usually uses phantoms 

(physical or computational) which simulate the human body or its parts.  

Physical model, made from different organic and non-organic materials, represents the 

electrical properties of various human tissues. The most challenging task in designing 

physical phantoms are the uncertainty of the electrical properties measured by 

commercially available systems, temperature change and water evaporation [78]. Some 

examples of already design and used physical phantoms can be found in [79, 80].  

First computational phantoms were based upon mathematical expressions representing 

sample analytical models [32]. Later, more realistic replication of human anatomy was 

created by dividing human body model into small voxels (volume pixel). A voxel is a 

small volume element or cube of a desired tissue and with dimensions of a few millimetres 

on each side. A whole-human body human voxel model can consist of many million 

voxels. Each voxel is given appropriate dielectric properties according to which organ it 

belongs.  

The first phantom, called NORMAN, was created in 1997 and consisted of 37 kinds of 

tissues with accuracy up to 2 mm [81]. Later, in 2005, the same authors created first female 

phantom, NAOMI [82], and in 2007 three boys and two girls’ children. Voxel models of 

whole-human body humans in various postures and of children, foetuses, and embryos 

have been developed by several laboratories [68, 83, 84].  
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Intrinsic disadvantage of voxel models is that they are usually based on the anatomy of a 

single man or woman, and they do not contain any spatial information at scales smaller 

than their native resolution and that they cannot be easily deformed to adopt different 

postures [85].  

These problems can be overcome by adopting a Computer Aided Design (CAD) approach, 

as in [86], to develop models in which the organ and tissue boundaries are represented by 

parametric surfaces.  

Over the years, experimental phantoms have been developed to understand coupling of 

EM fields to models of the biological systems. Although these models were relatively 

crude representations of the size and shape of the human body in beginning, experimental 

results show that calculations of the average SAR agree reasonably well with empirical 

values [32]. While most of these models do an excellent job of modelling the external 

shape of the exposed bodies, detailed modelling of the internal heterogeneities of the 

human body is very difficult and has been attempted only on a very limited scale and in a 

relatively crude manner. Simple homogeneous models have, therefore, been used more 

often [87].  

Studies show that analytical models in EM dosimetry can provide the satisfying level of 

accuracy under some conditions which makes them attractive to use. Besides simplicity 

and possibility for closed form solution, these models yield relatively precise results for 

electric field magnitude and SAR in regions of the human body with isotropic electrical 

behavior and when exposed area is approximately plane [73]. Generally, analytical 

models provide rapid estimation of the phenomena in an engineering sense. 

 

4.3.2 Analytical approach to internal electromagnetic dosimetry 

Analytical dosimetry approaches in internal EM dosimetry are usually related to some 

particularly simplified geometries, such as the planar models, spheres, the cylinders, the 

spheroids and the ellipsoids, in free space or over an infinite, perfectly conducting ground 

plane.  

The early work in theoretical dosimetry consisted of the calculation of energy absorbed in 

planar [88], spherical [89], and cylindrical [90] models of humans. These models were 

chosen, because they were the simplest to treat mathematically. Later on, block models 

composed of cubical cells arranged to simulate the human body [91] and prolate 

spheroidal models were introduced. The analysis of the prolate spheroidal models was 

extended to ellipsoidal models and more work was done on cylindrical models. Models 

of irregular shape were also analysed [92]. 

Generally, each of these techniques provides useful information over a limited range of 
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parameters, for example, over a limited range in frequency. However, despite the 

limitations of each specialized method, the composite of information obtained from these 

various techniques has provided a very valuable picture of EM dosimetry. 

Two representations of the human body interesting for analytical internal dosimetry 

approach are considered in this study: simple parallelepiped model of the human body and 

cylindrical human body model. The values of SARWB values obtained by both models are 

compared. 

 

4.3.1.1 Parallelepiped human body model 

SAR is defined as the mass averaged rate of energy absorption in tissue (4.11) 

SAR =
dP

dm
=
dP

ρdV
 (4.9) 

In HF EM fields can be quantify using power density 𝑄𝐸𝑀 

QEM = σ|E0|
2  (4.10) 

where 𝐸0 stands for effective electric field value. Power density is directly related to SAR 

QEM = ρSAR  (4.11) 

Since the left sides of (4.10) and (4.11) are the same, the right sides should be to  

SAR =
σ

2ρ
  |E0|

2  (4.12) 

Now at any point in the human tissue SAR is proportional to internal electric field [62, 

26]: 

SAR =
σ

2ρ
|Γtr|

2|E0|
2  (4.13) 

Γtr
MIT =

2n

n + 1
 (4.14) 

where  

- σ is electric conductivity of tissue, 

- ρ is density of the biological tissue,  

- E0 is the peak value of the field at the surface of the parallelepiped, and 
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- Γtr
MIT [53, 52, 16] is the transmission coefficient arising from the MIT, and 

- n  is the refraction index 

According to Fig. 4.1 parallelepiped human body model with height of H, depth of D, and 

width of W is placed at position (x, 0, 0) and exposed to radiation of VED antenna at 

height h above the ground. 

 

Figure 4.1 Parallelepiped human body model with height of H, depth of D, and 

width of W is placed at position (𝑥, 0, 0) 

SARWB depends on SAR value on body surface and body dimensions, and for 

parallelepiped body model is given by expression [26, 62]: 

SARWB =
1

HD
∫ ∫ SAR

 

D surf
dydy

 

H
  (4.15) 

where for illuminated by the plane wave, approximation formula for SARsurf 

SARsurf = SAR0e
−
2x

δ   (4.16) 

SAR0 is calculated using (4.13), and skin depth is given by: 

δ = √
2

ωμσ
 (4.17) 

Inserting (4.16) in (4.15), and using (4.13) 
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SARWB =
δ

2D
SAR0 =

σ

2ρ
|Γtr|

2|E0|
2 (1 − e−

2D

δ )  (4.18) 

For the purposes of the thesis model dimensions are 𝐻 = 180 cm, 𝑊 = 40 cm, and 𝐷 =

20 cm as in [62]. Conductivity may significantly vary in different body compartments, 

and increases considerably and non-linearly with frequency. The average conductivity of 

parallelepiped human body is 0.1 
S

m
 , as in [8]. Tissue density is considered constant on 

all frequencies, and the used value is 1010 
kg

m3
. When internal electric field is known, 

SARWB can be easily computed using (4.18).  

 

4.3.1.2 Cylindrical human body model 

The human body is represented by a homogenous cylinder, that comprises muscle tissue, 

which is the predominant tissue in the human body. Length of the cylinder is 𝐿 =  1.8 m 

and corresponds to the height of the body, and radius 𝑎 =  20 cm, and assumed to be 

vertically positioned on ground and exposed to HF field (Fig. 4.2).  

The cylindrical human body model represents a standing posture with arms in contact with 

sides. It was assumed that a time-harmonic vertically polarized plane wave induces a 

rotationally symmetric current density inside the equivalent cylindrical monopole antenna 

representing a grounded human body (𝑍𝑐 = 0). 

The average value of the conductivity of the human skin is frequency dependent: 

σω
∗ = σ + jωε0εr  (4.19) 

where 

- σω
∗  is complex conductivity, 

- σ is conductivity, 

- εr is relative permittivity, 

- ε0 is the permittivity of free space, and  

- ω is the angular frequency. 
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Figure 4.2 Cylindrical human body model with length L and radius a 

The BCs for the tangential to the wire electric field components can be written as [93] 

Ez
inc + Ez

sct = I(z)Zc(z)  (4.19) 

where 

- Ez
inc is the excitation function in the form of incident field, 

- Ez
sct is the scattered field due to the presence of the imperfectly conducting 

cylinder, 

- I(z) is induced axial current, and 

- Zc(z) is the impedance per unit length of the finitely conductive cylinder. 

The expression for the SARWB of the equivalent cylindrical monopole antenna is provided 

based on the three-term approach [59] (4.21), (4.22) and (4.23) 

SARWB =
1

V
∫SARdV = CI1I2

 

V

 (4.20) 

σk2

4ρLa4π3(σ2+ω2ε2)

1

|J1(j
−
1
2ka)|

2 = C  
(4.21) 

∫ |J0 (j
−
1

2 kζ|2  dζ
a

0
= I1    (4.22) 
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∫|Iz(z)|
2dz

L

0

= I2 (4.23) 

The approximate analytic expression for the total induced axial current inside the 

equivalent cylindrical monopole antenna of height L, radius a, and complex conductivity  

Iz(z) = V0
ev(z) + U0u(z)  (4.24) 

where 

V0
e = −

Isc(0)(2ZAZL)

2ZA+ZL
  (4.25) 

U0 =
E0

k
  (4.26) 

v(z) =
j2πk

ς0γψdR cos(γh)
[sin(γ(h − |z|)) + Tu(cosγz − cosγh) +

TD (
coskz

2
−
coskh

2
)]  

(4.27) 

u(z) =
j4π

ς0
[HU(cosγz − cosγh) + HD (

coskz

2
−
coskh

2
)]  (4.28) 

where 

- E0 is the incident electric field at the surface of the cylinder, 

- k is the free space wave number, 

- ZA =
1

2v(0)
 is the driving point impedance of the same cylinder when driven in base 

[Ω], 

- ZL is the load impedance at the base of the cylinder, 

- Isc(0) = U0u(0) is the current at the base when there is no load, and  

- Z0 is the free space impedance.  

The expressions of the frequency dependent coefficients are given in Appendix A, which 

involve integrals that are solved numerically. The imperfectly conducting nature of the 

equivalent cylindrical antenna was characterized by the complex propagation constant γ, 

which was defined as 

γ = k√1 − j
4πzi

kZ0ψdR
  (4.29) 
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where 

- zi is the surface impedance per unit length of the cylinder  

zi =
κ

2πaσω
∗

J0(κa)

J1(κa)
= ri + jxi  (4.30) 

κ = √−jωμ0ε0 (
σω
∗

ε0
− jω −

4πzi

μ0ψdR
)  (4.31) 

where 

- J0 is zero-order Bessel functions, 

- J1 is first-order Bessel functions, and 

- μ0 is the permeability of free space. 

Bessel function of the zero order first kind, and first order first kind are illustrated in Fig. 

29. 

 

Figure 4.3 Bessel functions of the first and second kind [94] 

When calculating induced current one sets γ = k, and then calculates zi, ψdR, and updates 

γ for new iteration. When calculating Iz(z) according to (4.24), it is considered that human 

is barefoot (V0
e = 0). Knowing Iz(z), integral I2 can be calculateed according (4.23), and 

then SARWB according to (4.20). 
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4.4 Internal dosimetry – Analytical procedure 

Based on the (4.18) and (4.20), and the already described source of EM waves (Section 

3.3), in this section SARWB values calculated for parallelepiped and cylindrical human 

body models are compared. The changes of SARWB when the human body models change 

location in x-axis (20 ≤  𝑥 ≤ 200) are considered. These changes are studied in 4 points 

in vertical z direction which correspond to electric field maximums 𝑧 = 0.25 m, 𝑧 =

0.75 m, 𝑧 = 1.25 m, and 𝑧 = 1.75 m. The body properties are given in Table 4.1, and 

nominal valued of EMI source are as in Table 3.3. 

 

Table 4.1 Human body properties 

Parameter Nominal Value 

Parallelepiped human body 

dimensions 

𝐻 = 180 cm,𝑊 =

40 cm,𝐷 = 20 cm  

The average conductivity of 

human body 
𝜎 = 0.1 

S

m
 

Tissue density  𝜌 = 1010 
kg

m3
. 

Cylindrical human body 

dimensions 
𝐿 = 180 cm, 𝑎 = 20 cm 

 

Fig. 4.4 to Fig. 4.7 show SARWB versus point location in the x-axis for a fixed distance in 

z vertical direction corresponding to field maxima z=0.25 m, z=0.75 m, z=1.25 m, and 

z=1.75 m, frequency 𝑓 = 3 GHz and at antenna height of h=20 m above ground. SARWB 

is calculated using previously obtained values of the incident field, presented in Section 

3.3. 



62 

 

Figure 4.4 𝑆𝐴𝑅𝑊𝐵 versus point location in the x-axis for a fixed distance from the 

source in an z vertical direction z=0.25 m, f=3 GHz, h=20 m and sinusoidal current 

distribution 

 

 

Figure 4.5 𝑆𝐴𝑅𝑊𝐵 versus point location in the x-axis for a fixed distance from the 

source in an z vertical direction z=0.75 m, f=3 GHz, h=20 m and sinusoidal current 

distribution 
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Figure 4.6 𝑆𝐴𝑅𝑊𝐵 versus point location in the x-axis for a fixed distance from the 

source in an z vertical direction z=1.25 m, f=3 GHz, h=20 m and sinusoidal current 

distribution 

 

 

Figure 4.7 𝑆𝐴𝑅𝑊𝐵 versus point location in the x-axis for a fixed distance from the 

source in an z vertical direction z=1.75 m, f=3 GHz, h=20 m and sinusoidal current 

distribution 

Spatial distributions for SARWB follows a similar pattern as the corresponding electric 

field distributions, presented in Section 3.3. According to the [3], the maximum value of 

SARWB should not exceed 0.4 
W

kg
 for workers and 0.08 

W

kg
 for the general public. According 

to Fig. 4.4 to Fig. 4.7 the SARWB is bellow limits defined by ICNIRP in all analyzed cases. 
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Maximum value of SARWB is obtained using the approximate analytical and numerical 

models in parallelepiped human body model and it is obtained at point around 26 m from 

source in x direction, and is less than 1.2 10−6
W

kg
. In case of rigorous numerical model 

(obtained in NEC), the maximum is less than 0.46 ∙ 10−6
W

kg
, and in cylindrical human 

body model the maximum of SARWB obtained in this point is less than 0.2 10−6
W

kg
. 

Overestimation of the SAR value in the analytical model compared to the rigorous model 

does not introduce the danger of undetected excessive exposure of the body to field 

radiation. Whereas, underestimation introduces risks for undetected excessive exposure 

of the body to field radiation, which should be avoided. 

This difference between SARWB obtained using parallelepiped and cylindrical body 

models, falls below 10 % at 80 m and reaches the value less than 1 % at 200 m from source 

antenna in x horizontal direction. Generally, positioning of human body model far away 

from source antenna allows simpler human body modelling. Therefore, the simplified 

body models may be used in the far field zone. 

As already stated, below 𝑓 = 6 GHz, EMFs penetrate deep into human tissue, and the used 

dosimetrie quantity is SAR. Above 𝑓 = 6 GHz, EMFs are absorbed at the surface, and the 

APD specified over different areas is used. Also, area-averaged TPD at skin surface as a 

metric for the estimation of surface temperature elevation above the transition frequency 

is discussed [76].  

Bearing this in mind, the calculation of an internal electric field, SAR and TPD has been 

performed at frequencies 𝑓 = 3 GHz, 𝑓 = 6 GHz, and 𝑓 =  9 GHz respectively. 

Calculated values where compared for analytical and numerical approach with sinusoidal 

current distribution. 

Furthermore, SAR and TPD are calculated by using the proposed closed form expressions 

for the corresponding irradiated electrical field assuming the sinusoidal current 

distribution along a vertical dipole antenna, placed above lossy half space and 

parallelepiped human body model. Results are compared to the more rigorous approach 

using the near field Green function (reduced kernel) and numerical integration for the 

incident field calculation. 

Note that, TPD is obtained by evaluating the integral (4.8) and for geometry shown in Fig. 

4.1 it follows 

TPD(x) =
1

2
∫ ρSAR
x

0

dx =
σδ

2
|Γtr|

2|E0|
2 (1 − e−

2x
δ ) (4.32) 
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Relative permittivity and specific conductivity values of the human body for different 

frequencies are given in Table 4.2, and nominal valued of EMI source are as in Table 3.1. 

The body is approximately represented by muscle tissue properties [29]. 

Table 4.2 Electric properties of the human body [29] 

Frequency [𝑮𝑯𝒛] Permittivity Conductivity [
𝑺

𝒎
] 

3 52.1 2.14 

6 48.2 5.2 

9 44.1 9.19 

First the absolute value of incident field at the surface of the human body and at transition 

frequency 𝑓 = 6 GHz is analysed. The incident electric field for the distances of 𝑥 = 60 m 

to 𝑥 = 100 m from the antenna and a fixed height 𝑧 = 1.65 m above ground, are 

calculated and shown in Fig. 4.8. 

 

Figure 4.8 The absolute value of the electric field versus point location in the x-axis 

for the frequency f=6 GHz 

The maximum value of the irradiated field obtained for an analytical approach is 0.16 
V

m
 

and for an approximate numerical approach with an assumed current distribution is 0.06 
V

m
. The highest values of the field are obtained around 𝑥 = 60 m, a point close to the 

antenna. The phase deviation of these two models decreases as x increases, showing better 
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model agreement at points on the x-axis that are farther from the antenna. Thus, further 

analysis is carried out for the body placed at distance of 𝑥 = 60 m from the antenna. 

Next, the electric field induced inside the human body has been calculated for the 

frequencies of 𝑓 = 3 GHz, 𝑓 = 6 GHz and 𝑓 = 9 GHz, respectively and results are shown 

in Fig. 4.9, Fig. 4.10, and Fig. 4.11, respectively. Since field values inside human tissue 

drop rapidly, the diagrams for are presented depth of 20 mm.  

 

Figure 4.9 The absolute value of the electric field versus tissue depth for a fixed 

distance from the source in a z vertical direction z=1.65 m, h=20 m, f=3 GHz, 
𝐿

𝜆
=

1

10
, and sinusoidal current distribution 

 

Figure 4.10 The absolute value of the electric field versus tissue depth for a fixed 

distance from the source in a z vertical direction z=1.65 m, h=20 m, f=6 GHz, 
𝐿

𝜆
=

1

10
, and sinusoidal current distribution 
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Figure 4.11 The absolute value of the electric field versus tissue depth for a fixed 

distance from the source in a z vertical direction z=1.65 m, h=20 m, f=9 GHz, 
𝐿

𝜆
=

1

10
, and sinusoidal current distribution 

As expected the internal field decreases exponentially with tissue depth. Based on the Fig. 

4.9 to Fig. 4.11, it can be concluded that the absolute value of the transmitted field dies 

off more rapidly for the higher frequency. Thus, the penetration depth is smaller for the 

higher frequencies. The results obtained via different approaches agree satisfactorily. 

Fig. 4.12 to Fig. 4.14 show SAR  versus tissue depth for frequencies of 𝑓 = 3 GHz, 𝑓 =

6 GHz and 𝑓 = 9 GHz, respectively. SAR is calculated using previously obtained values 

of an incident electric field.  

 

Figure 4.12 𝑆𝐴𝑅  versus point location in the x-axis for a fixed distance from the 

source in an z vertical direction z=1.65 m, h=20 m, f=3 GHz, 
𝐿

𝜆
=

1

10
, and sinusoidal 

current distribution 
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Figure 4.13 𝑆𝐴𝑅  versus point location in the x-axis for a fixed distance from the 

source in an z vertical direction z=1.65 m, h=20 m, f=6 GHz, 
𝐿

𝜆
=

1

10
, and sinusoidal 

current distribution 

 

Figure 4.14 𝑆𝐴𝑅  versus point location in the x-axis for a fixed distance from the 

source in an z vertical direction z=1.65 m, h=20 m, f=9 GHz, 
𝐿

𝜆
=

1

10
, and sinusoidal 

current distribution 

Spatial distributions for SAR follow the similar pattern as the corresponding electric field 

distributions as expected.  

Fig. 4.15 to Fig. 4.17 show TPD versus tissue depth for three frequencies: 𝑓 = 3 GHz, 

𝑓 = 6 GHz and 𝑓 = 9 GHz. TPD is calculated using previously obtained values of the 

incident electric field and SAR according to equation (4.32). 
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Figure 4.15 TPD versus tissue depth for a fixed distance from the source in a z 

vertical direction z=1.65 m, h=20 m, f=3 GHz, 
𝐿

𝜆
=

1

10
, and sinusoidal current 

distribution 

 

Figure 4.16 TPD versus tissue depth for a fixed distance from the source in a z 

vertical direction z=1.65 m, h=20 m, f=6 GHz, 
𝐿

𝜆
=

1

10
, and sinusoidal current 

distribution 
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Figure 4.17 TPD versus tissue depth for a fixed distance from the source in a z 

vertical direction z=1.65 m, h=20 m, f=9 GHz, 
𝐿

𝜆
=

1

10
, and sinusoidal current 

distribution 

Fig. 4.15 to Fig. 4.17 show the difference in the calculated TPD values for analytical 

model with far field approximation and numerical model observed for a change of 

frequency from 𝑓 = 3 GHz to 𝑓 = 9 GHz. TPD values increase rapidly and reaches a 

maximum value at a certain tissue depth that remains constant regardless of further depth 

increase. The maximum value corresponds to final accumulated EM energy in human 

body.  

The difference between the observed models grows with increasing frequency, so it is at 

a maximum of 𝑓 = 9 GHz and a minimum of 𝑓 = 3 GHz. With increasing frequency, TPD 

reaches its maximum (constant value) faster, that is, energy accumulates closer to the 

surface of human tissue (skin effect). Compared to the SAR values it could be seen that 

for the simple homogeneous model of the human body, values obtained by two approaches 

correspond to each other since the TPD reaches the maximum as the SAR drops to the 

zero. Thus, both quantities could be used on frequencies above the 6 GHz since they 

provide the same information and insight in the induced field and power distribution 

Finally, Fig. 4.18 and Fig. 4.19 show the SARWB and total TPD versus location of the 

human body in the x-axis direction at frequency 𝑓 = 6 GHz. The total TPD corresponds 

to TPD value obtained for a tissue depth of 20 cm. 
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Figure 4.18 𝑆𝐴𝑅𝑊𝐵 versus point location in the x-axis for a fixed distance from the 

source in an z vertical direction z=1.65 m, f=6 GHz, h=20 m, 
𝐿

𝜆
=

1

10
, and sinusoidal 

current distribution 

 

 

Figure 4.19 TPDtot versus point location in the x-axis for a fixed distance from the 

source in an z vertical direction z=1.65 m, f=6 GHz, h=20 m, 
𝐿

𝜆
=

1

10
, and sinusoidal 

current distribution 
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Spatial distributions for total TPD follows a similar pattern as SARWB distributions, and 

the difference between SARWB values and total TPD values obtained by both models are 

similar. The proposed analytical model can be used when the dosimetric quantity, that is, 

the frequency, changes. 

 

4.5 Chapter Summary 

Analytical approaches in internal EM dosimetry deal with canonical geometries, such as 

the planar models, spheres, the cylinders, the spheroids and the ellipsoids, in free space or 

over an infinite, perfectly conducting ground plane. In this thesis SARWB is computed by 

using a simple parallelepiped and cylindrical human body models. Both SARWB values 

are below limits defined by ICNIRP in all analyzed cases. Maximum value of SARWB 

obtained for approximate analytical and numerical models in parallelepiped is less than 

1.6 10−6
W

kg
. EM dosimetry in parallelepiped human body model is considered as 

mathematically simpler compared to cylindrical human body model. The small 

differences in SARWB values imply that the proposed approaches are useful in getting 

rapid estimation of the phenomenon in average sense, without significant loss of accuracy.  

Furthermore, straightforward calculation of the induced electric field, SAR and TPD 

values are performed in simple parallelepiped human body model for transition frequency 

[3], and frequencies that are 50 % away from it. 

Undertaken analysis shows that, the absolute values of the field, SAR and TPD within the 

tissue decrease faster with frequency increase and thus penetrates less into the human 

body. The results obtained via different approaches agree satisfactorily, thus verifying the 

proposed simple analytical method. This finding is very interesting since the analytical 

approach is less demanding in terms of computational cost and could be of interest for 

more complex antenna configurations arising from various realistic scenarios. 

Bearing in mind that the electric field and SAR values obtained by means of analytical 

approach is higher than the ones corresponding to the results obtained via more rigorous 

numerical modelling it can be concluded that such an overestimation is acceptable for the 

health risk assessment. Namely, if the overestimated values do not exceed exposure limits 

it is ensured that the values stemming from realistic scenarios from either computation or 

measurement will stay within the proposed limits.  
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CHAPTER 5 

Thermal dosimetry procedures for canonical tissue 

representation 

 

5.1 Modelling of the heat transfer phenomena in biological tissue 

The normal body core temperature is around 37 ℃. This body temperature is the result of 

equilibrium between heat production and heat loss. If the body temperature stretches so 

far from normal temperature, death will occur. The temperature nearly 27 ℃ and below 

and nearly 42 ℃ and above are critical, so the body temperature should be maintained 

around 37 ℃. 

By the definition, the occurrence of storing a larger amount of energy than the 

thermoregulatory capacity of the human body, is referred to as the thermal effect [48]. 

Further on, the main effect of exposure to HF fields is heating. The rise of local 

temperature in tissue may be a consequence of oscillations in the molecules caused by 

absorbed EM energy [95]. Better understanding of process that actually happens in 

biological tissues as a result of EM interaction is needed to obtain the increase of tissue 

temperature and to conclude if the radiation effects are hazard for humans or not. To obtain 

the desired temperature increase in HF frequency range, it is important to know the time 

of exposure. 

There are numerous models that can be used to describe the process of heat exchange, but 

the model proposed by Pennes’ is widely used, because of its simplicity and acceptable 

accuracy if no large thermally significant blood vessels are close to the analysed heated 

region [96]. The PBHE was established by conducting a sequence of experiments 

measuring temperatures of tissue and arterial blood in the resting human forearm [96, 97]. 

The equation includes a special term that describes the heat exchange between blood flow 

and solid tissues. The blood temperature is assumed to be constant arterial blood 

temperature. A generalized form of the PBHE can be written as [98]: 

ρtct
∂T(𝐗,t)

∂t
= ∇λ(𝐗)∇[T(𝐗, t)] + ρbcbωb(𝐗)[Ta − T(𝐗, t)] + Qm(𝐗, t) +

Qr(𝐗, t), 𝐗ϵΩ  
(5.1) 

where 

- ρt is tissue density [
kg

m3
], 
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- ct is the specific heat of tissue [
J

kg℃
], 

- T(𝐗, t) is the tissue temperature [℃], 

- t is the time [s], 

- λ(𝐗) is the space dependent thermal conductivity [
W

m℃
], 

- 𝐗 contains the Cartesian coordinates x, y and z, 

- ρb is the density of blood [
kg

m3
], 

- cb is the specific heat of blood [
J

kg℃
], 

- ωb(𝐗) is the space dependent blood perfusion [
m3

s·kg
], 

- Ta is the arterial temperature [℃], 

- Qm is the power produced by metabolic process [
W

m3
], 

- Qr is the power deposition of external sources [
W

m3
], and 

- Ω is the analyzed spatial domain. 

According to (5.1) PBHE describes the energy balance between conductive heat transfer 

per tissue volume unit (∇λ(𝐗)∇[T(𝐗, t)]), heat loss due to perfusion (ρbcbωb(𝐗)[Ta −

T(𝐗, t)]), metabolism (Qm(𝐗, t)) and energy absorption due to external sources (Qr(𝐗, t)). 

In EM studies, external source is usually EM source, and external heat is the result of EM 

radiation. PBHE derivation is given in the Appendix B. 

PBHE was used in numerous studies to predict temperature changes in biological tissue 

[22, 96, 99-107]. Thermal tissue parameters (blood perfusion rate, the metabolic rate and 

the thermal conductivity) are assumed to be time and temperature independent. Having in 

mind above mentioned, the PBHE usually has the following form [95, 96]: 

∇(λ∇T)⏟    
heat flux

+Wbcb(Ta − T)⏟        
perfusion rate

+ Qm⏟
metabolism

+ QEM⏟
EM energy

= ρtct
∂T

∂t
  (5.2) 

where 

- Wb is the volumetric perfusion rate [
1

s
], and 
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- QEM is the EM power deposition [
W

m3
]. 

QEM represents the resistive heat generated by the EM source and is expressed as [95]: 

QEM =
σ

2
|E|2  (5.3) 

where 

- σ is the electric conductivity of the tissue, and  

- E is the maximal value of the electric field induced inside the human body. 

Dissipated power density 𝑄𝐸𝑀 is directly related to SAR, as follows [48]: 

QEM = ρSAR  (5.4) 

For simplicity thermal tissue parameters are assumed to be constant in most of the studies, 

yet some studies analyse the effects of thermal tissue parameters on temperature change 

[22, 103, 108-110]. In [111] the effects of thermal conductivity, ambient temperature and 

blood temperature on steady-state temperature distribution in 2D model of the human eye 

was numerically analysed. Effects of the thermal conductivity, the blood perfusion, the 

metabolic heat generation, and the coefficient of heat transfer on the temperature 

distribution are analysed in [108, 103]. Authors from [112] shown that the gradient of the 

temperature variation (∇[T(𝐗, t)]) decreases with blood perfusion (ωb) increase. Further 

on, changes in metabolic heat generation (Qm) elevates the inner tissue temperature 

magnitudes but maintains an almost constant slope in the temperature flow path to the 

boundary regardless the metabolic rate [112].  The effect of thermal conductivity (λ) has 

the significant and more remarkable effects in temperature variation in living tissue 

compared to other thermal parameters [113].  

To reach PBHE solution the BCs at the interface between tissue types with different 

electrical and dielectric properties, including the human body and ambient air, needs to be 

define. Generally, BCs belong to one of three types: BCs of first type (5.5), BCs of second 

type (5.6) and BCs of third type - convection (5.6). 

T|surface = T0 or T|surface = f(𝐗, t) (5.5) 

−λ
∂T

∂n
|surface = q0

′′ (5.6) 

−λ
∂T

∂n
|surface = h(T|surface − T∞) (5.7) 
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where  

- T0 is a prescribed constant temperature, 

- T|surface = f(𝐗, t) is the prescribed surface temperature distribution that is, in 

general, a function of position and time, 

- n is the unit outward normal to the surface, 

- q0
′′ is a prescribed constant heat flux [

W

m2
], 

- h is the convection coefficient, and 

- T∞ denotes the temperature of the air. 

Special case in which 𝑇|𝑠𝑢𝑟𝑓𝑎𝑐𝑒 = 0 is denoted as homogenous BC of the first type, the 

special case of zero heat flux at the boundary is called the homogeneous BC of the second 

type (perfectly insulated or adiabatic surface), and special case of T∞ is called the 

homogeneous BC of the third type. 

Heat flux is directed to the internal normal, and the minus sign is introduced in (5.7) to 

make the heat flow a positive quantity in the positive coordinate direction (opposite of the 

temperature gradient). A positive value corresponds to a heat source, and negative value 

represent a heat sink (Fig. 46). 

 

Figure 5.1 Heat flux [94] 

The expression h(T|surface − T∞) describes convective heat transfer with the surrounding 

environment. The value of h depends on the geometry and the ambient flow conditions. 

Heat transfer coefficient varies with the type of flow (laminar, transition, turbulent, etc.), 

the geometry of the body and flow passage area, the physical properties of the fluid, the 

average surface and fluid temperatures, and many other parameters. As a result, there is a 

wide difference in the range of values of the heat transfer coefficient for various 
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applications. This ambient dependence phenomenon in thermal distribution of biological 

body produces a distinguishable elevation in skin temperature [112], and the higher the 

coefficient of heat transfer, the lower the temperature near the boundary of the body. 

Fig. 5.2 illustrates BCs for a 1-D plane wall over the domain 0 ≤  𝑥 ≤  L. Initially the 

slab is at a temperature 𝑇 =  F(x) (BCs of first type) and for times 𝑡 > 0 the boundary 

surface at x = 0 is exposed to an incident heat flux, while the boundary at 𝑥 =  L 

dissipates heat by convection with a heat transfer coefficient h into a zero-temperature 

fluid (𝑇∞ = 0). 

𝑞0
′′ ℎ, 𝑇∞ = 0 

Figure 5.2 Example for BCs formulation for 1-D plane wall [112] 

When exposed to external heat sources, the body it reacts with metabolic processes, trying 

to maintain a stable temperature state. This transition process is called a transient process. 

After a certain time, a stationary temperature state occurs. In other words, the temperature 

is constant in respect to time. According to previous mentioned, heat transfer problems 

are often classified as steady-state and transient (Fig. 5.3).  

 

Figure 5.3 Transient vs Steady-state response 

The term stationary implies no change with time at any point within the medium, while 

transient implies variation with time or time dependence. Most heat transfer problems 
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encountered in practice are transient in nature, but are usually analyzed under some 

assumed steady-state conditions since stationary processes are easier to analyze. For 

steady-state solution, PBHE has the form [114] 

∇(λ∇T)⏟    
heat flux

+Wbcb(Ta − T)⏟        
perfusion rate

+ Qm⏟
metabolism

+ ρSAR⏟  
EM energy

= 0  
(5.8) 

Analysis of thermal response of biological materials, such as human skin, due to EM 

radiation is very important not only for understanding of biological processes but also for 

many clinical applications such as cancer therapy, hyperthermia and cryopreservation 

[98]. Many authors solve the PBHE assuming steady-state conditions [102, 112, 115-117]. 

Others authors describe the transient temperature response of tissue for the whole-time 

domain starting from transient periodic oscillation to the final steady periodic oscillation 

[100, 118, 119]. In the rest of this section, different approaches to solving for PBHE are 

presented. 

 

5.2 Solving the Pennes’ Bio-Heat transfer equation 

As is the case with EM dosimetry, the PBHE can be solved both analytically and 

numerically. Traditionally, numerical methods are used when analytical solutions are not 

available, but if both analytical and numerical solutions can be obtained for the same issue, 

the analytical one is often preferred [9]. Although analytical solutions fail when dealing 

with complex geometries or nonlinearities, they provide the tools for numerical code 

testing and also for performing a valuable sensitivity analysis (SA) of the parameters 

involved in a problem [120].  

On the other hand, analytical solution od PBHE requires adoption of appropriate 

assumptions. Depending on the relative magnitudes of the heat transfer rates in different 

directions and the desired level of accuracy, heat transfer problems are classified as one-

dimensional, two-dimensional, or three-dimensional [121]. In the most general case, heat 

transfer through a medium is three-dimensional, but for simplicity one-dimensional 

problems are covered in literature. A heat transfer problem is said to be one-dimensional 

if the temperature in the medium changes in only one direction and therefore heat is 

transferred in one direction, and temperature variations and thus heat transfer in other 

directions are negligible or zero. 

The exact solution of one-dimensional PBHE has been given for single-layer model [99, 

120, 122, 123], 2-layer model [124], and 3-layer model [98, 102, 110, 125]. To obtain 

analytical solution most of these studies are considering steady-state or assume a constant 

heating at skin surface. Pure analytical methods, among others, include the Laplace 

transform method [100, 102], a method based on Modified PBHE (MPBH) [101], a 

method based on Bessel functions [108, 112], and SoV [94]. 
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If it is very difficult, or even impossible, to obtain analytical solutions of the PBHE, 

numerical solutions are attempted. The use of numerical methods is computationally 

demanding, especially for some complex cases with three-dimensional domains or 

variable thermophysical properties [9]. Some of the numerical approaches used to solve 

PBHE include the BEM, the FEM [104, 126], the FDM [127], and MC [9]. Hybrid 

analytical-numerical methods for PBHE using the methodology of Variational Iteration 

Method (VIM) are mentioned in [109, 128].  

In addition to the mentioned dosimetric methods, it should be emphasized that the 

beginnings of research in the field of thermal dosimetry are related to experimental 

dosimetry. Experimental investigations of temperature rise produced in parts of the human 

body during heat to microwaves of 10 cm and 94 cm wavelength are described in [129]. 

In [130] cutaneous thresholds for thermal pain were measured in 10 human subjects during 

3-s exposures at 94 GHz, and corresponded to an increase in surface temperature of ≈ 

9.9°C. Thresholds for thermal damage to the cornea was studied in [131] and the threshold 

value correspond to temperature increases of about 20 °C at irradiation frequencies, of 35 

GHz to 94 GHz, and exposure duration of 1-5 s. Study [132] reports measurements of the 

skin surface temperature elevations during localized irradiation (94 GHz) of three species: 

rat (irradiated on lower abdomen), rhesus monkey (posterior forelimb), and human 

(posterior forearm), and concludes that variable blood flow model, reflecting a dynamic 

thermoregulatory response, may be more suited to describing skin surface temperature 

response under long-duration MMW irradiation. 

The basic idea behind numerical, hybrid and analytical approaches is presented in the rest 

of this chapter. First, short description for numerical and hybrid approaches is given, 

followed by detailed explanation of some of the analytical methods. 

 

5.2.1 Numerical methods in thermal dosimetry 

Numerical techniques are applicable to almost all scientific engineering problems, but the 

main drawbacks are related to the approximation limitation within the model itself, space 

and time discretization [133]. The application of classical numerical methods (FEM, 

FDM, and BEM) for solving Pennes' equation is explained below. 

The finite element formulation of steady-state PBHE starts by multiplying (5.8) by a set 

of weighting functions and integrating over the domain, after some work, a suitable 

expression for the FEM implementation is [134]: 

∭ λ∇T ∙ ∇WjdΩ +∭ WbTWjdΩ
 

Ω
+∭ hsTWjdS

 

∂Ω
=∭ (WbTa +

 

Ω

 

Ω

Qm + QEM)WjdΩ +∭ hsTairWjdS
 

∂Ω
  

(5.9) 
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where 

− Wj is the weighting function. 

FEM is widely used because it can compute complex shapes well, such as the human head 

[134, 135] or eye [136], but the main disadvantage of the method is that it requires domain 

discretization which may give rise to high computational cost. 

FDM can be applied to EM problems with different boundary shapes, different kinds of 

BCs, and regions containing a number of different materials. Method is based on the 

approximation of the function derivatives using the finite differences, that is, a differential 

equation is replaced by a finite difference equation [133]. In case of (5.8) second order 

temperature derivative is replaced as in (5.10) 

∇2u =
∂2u

∂x2
+
∂2u

∂y2
≈
ui+1,j+ui−1,j−2ui,j

h2
+
ui,j+1+ui,j−1−2ui,j

h2
  (5.10) 

where 

- ∇2u at node (i, j) is replaced by an algebraic finite-difference operation of the 

function at adjacent nodes. 

It was reported that FDM is more efficient than the FEM by a factor of 2 in computer 

storage for calculating the propagation constants and fields of a dielectric wave guide 

[137]. If the region contains different materials and complex shapes, the FDM application 

becomes more complicated. If the field contains rapid changes of gradient, the accuracy 

declines. In these cases, the FEM is preferred. 

BEM involves the discretization of the domain boundary into elements, which is an 

important advantage of this method [133]. BEM algorithm for PBHE is given with integral 

equation [138] 

B(ξ)T(ξ) + ∫ T∗(ξ, x)q(x)dΓ
 

Γ
= ∫ q∗(ξ, x)T(x)dΓ

 

Γ
+ ∫ [Q −

 

Ω

gT(x)]T∗(ξ, x)dΩ  
(5.11) 

where 

- ξ is the observation point, 

- B (ξ )ϵ(0, 1], 

- T∗(ξ, x) is the fundamental solution, 

- q(x) = −λ
∂T(x)

∂n
 is the heat flux, and 
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- q∗(ξ, x) = −λ
∂T∗(ξ,x)

∂n
 is the heat flux resulting from the fundamental solution. 

Some illustrative numerical examples of BEM implementation are given in [48, 49, 138, 

139]. BEM requires a more complex formulation and related numerical implementation 

as it is computationally more expensive then FDM and FEM [140]. 

Based on the above-mentioned, numerical methods are an excellent tool for solving bio-

heat transfer problems, but their general applicability requires a special care to handle the 

complicated geometry and properties of the biological bodies. Trying to integrate the 

advantages of numerical and analytical approaches some studies suggest hybrid methods, 

such as VIM. 

 

5.2.2 Hybrid methods in thermal dosimetry 

VIM application starts from a dimensionless relation for the evaluation of temperature in 

the tissue ((5.12) and (5.13)), together with associated BCs ((5.14)).  

x′ =
x

L
, t′ =

t

t∗
, θ =

T−T0

Ta−T0
  (5.12) 

∂θ

∂t
= λ

∂

∂x
(
∂

∂x
) + α(1 − θ) + Q1 + Q2  (5.13) 

θ(x, 0) = x, θ(0, t) = 0, θ(L, t) = 0 (5.14) 

In this sense, the nonlinear partial differential equation (PDE) is observed in which 

Lθ(x, t) is linear operators, Nθ(x, t) is a nonlinear operator and g(x, t) is inhomogeneous 

term.  

Lθ(x, t) + Nθ(x, t) = g(x, t)  (5.15) 

By using the correlation function, successive approximations are established by 

determining the Lagranian multiplier by variational theory. Applying VIM to relation 

(5.15), i.e. constructing a correlation function in the x direction, the iteration formula in 

the x direction is determined, and using initial conditions, the desired number of iterations 

of the solution can be determined to the desired levels of accuracy [128].  

Even computationally less demanding compared to pure numerical method, in some 

practical situations simple and fast solution for temperature distribution may be required. 

Therefore, the focus of the next subsection is on analytical methods, and they are 

described in more detail. 
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5.2.3 Analytical methods in thermal dosimetry 

Analytic solutions of bio-heat transfer equations are difficult to obtain in general, due to 

process complexity, and in many equations only numerical methods are applicable. 

However, as already stated, analytic solutions are of important not only because they can 

accurately reflect the actual physical feature of equations but they are valuable tool in 

verification the corresponding results of numerical calculation. In vivo measurements are 

certainly impossible.  

Various techniques have been proposed to obtain analytical solutions of the PBHE. The 

one-dimensional heat transport equation has been solved in [141] using the Fourier 

transform for a semi-infinite plane, and the effects of thermal convection due to blood 

flow and transfer of heat from the tissue surface into space on the steady-state temperature 

distribution in the tissue is analyzed. In [9] Green’s function method is used to obtained 

several closed form analytical solutions to the bio-heat transfer problems with stationary 

or transient heating on skin surface or inside biological bodies. By using the Laplace 

transform, the analytical solution of the PBHE with surface sinusoidal heating condition 

is found in [100]. Investigation of the analytical solution of the temperature elevation for 

parametric analysis in one-dimensional human model started in [102], and continued in 

[115] with one-dimensional 3-layer (skin, fat and muscle) and one-layer (skin only) 

models. Obtained analytical solution can provide insights of thermal behaviour of living 

tissues and it useful to easily and accurately study the thermal behaviour of the biological 

system [101].  

The computational procedure has been applied to study the exposure of a 3-layer model 

composed by skin, subcutaneous adipose tissue (SAT) and muscle, both at 100 GHz and 

1 THz in [22]. A temperature-based technique for the evaluation of safety compliance is 

proposed in [27]. Authors from [142] concluded that dielectric properties of adipose tissue 

in multilayer plane model do not impact on temperature elevation at frequencies over 30 

GHz. A revision of the 1-D problem described in [141] along with a comprehensive 

mathematical derivation of analytical solution, and extension to irradiation of multiple 

electromagnetic heating pulses is offered in [107]. A simple, analytical method is proposed 

to determine the temperature increase in human tissue based on the wave matrix method 

in [73]. 

The basic idea behind some of aforementioned analytical approaches along with their 

advantages and disadvantages is presented in the rest of this section.  

The Laplace transform (𝐿) of function 𝑓(𝑡) denoted by 𝐹(𝑠), s being the complex variable 

is defined as: 

F(s) = f(̅s) = L{f(t); s} = ∫ e−stf(t)dt; t ∈ R+
∞

0
  (5.16) 
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Inverse Laplace transform (L−1) of F(s) is defined as: 

f(t) =  {F(s); t} =
1

2πi
∫ estF(s)ds; t ∈ R+, γ = R(s)
γ+i∞

γ−i∞
  (5.17) 

where 

- s is the Laplace transform variable, and 

- γ is a positive number 

Temperature elevations at a steady-state for the one-dimensional single-layer and one-

dimensional 3-layer human tissue models obtained via Laplace transform method were 

offered in [100] and in [102] respectively: 

T(x) = Ta +
q0

√4λWbcb
[e
−√

Wbcb
λ erfc x (

x

√4αt
−√

Wbcb

ρtct
t) − e

−√
Wbcb
λ erfc (

x

√4αt
+

√
Wbcb

ρtct
t)]  

(5.18) 

Tn(z) = Tn(0)cosh√
bn

λn
z + Tn

′(0)
1

√
bn
λn

sinh√
bn

λn
z + (Tb +

An

bn
) (1 − cosh√

bn

λn
z) +

Sn(z)  

(5.19) 

where 

- q0 is constant heat flux on the skin surface, 

- erfc is the complementary error function,  

- α =
λ

ρtct
 dimensionless variables 

- Tn(0) denotes temperature in tissue n and z=0, 

- bn is the term associated with blood flow,  

- Tn
′(0) =

∂Tn(z)

∂z
|
z=0

, and 

- Sn(z) denotes the term related to the plane wave exposure. 

Although the application of the Laplace transform for the removal of the partial derivative 

is a relatively straightforward matter, the inversion of the transformed solution generally 

is rather involved unless the inversion is available in the standard Laplace transform 

tables.  
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Bessel functions under certain conditions, describe the PBHE solution. In [108] the Bessel 

functions, described the PBHE solution for one-dimensional cylindrical living tissues 

(r, θ, z) in the steady-state: 

𝑇(r) = T∞ + (Ta − T∞) (1 +
Qm
∗

wb
∗ ) [1 −

J0(√wb
∗ r

R
)

J0(√wb
∗ )+

√wb
∗

h∗
J1(√wb

∗ )

]  (5.20) 

where 

- Qm
∗ =

QR2

λ(Ta−T∞)
, 

- wb
∗ =

WbcbR
2

λ
, 

- h∗ =
hR

λ
, 

- J0 is the Bessel function of the zero order first kind, and 

- J1 is the Bessel function of the first order first kind. 

Since Bessel functions can be computed using approximated polynomials, this solution 

may be difficult to perform some parametric study, and simpler analytical solution would 

be also favoured. 

The SoV method has been widely used in the solution of heat conduction problems and it 

is suitable for homogeneous PDE, or multi-dimensional steady-state heat conduction PDE 

with no generation and if only one of the BCs is nonhomogeneous [94]. Problems 

involving more than one nonhomogeneous BC can be split up into simpler problems using 

the principle of superposition. To apply the solution structure theorem and the SoV 

method, the BCs must be linear, homogeneous, separable, and with constant coefficients 

[10]. 

Pennes’ Bio-heat equitation can be solved analytically for all homogeneous layer in one- 

dimensional multi-layer models, by exploiting the classical theory of ordinary differential 

equations. Inside each layer, steady-state temperature elevation is given by the 

superposition of the solution related to the homogeneous linear equation and the particular 

solutions. In order to determine the values of constant in solution related to the 

homogeneous linear equation in each biological layer (for a total of 2N values), the 

resulting solution must be forced to satisfy the proper BCs (constant variation method). 

The method of constant variation is very suitable for linear systems, while it is more 

difficult to apply this approach to non-linear systems [24]. Further on, mathematic 

simplicity of this methods enables parametric analysis, and one example is reported in 
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[22]. On the other hand, this solution is suitable for steady-state temperature elevation.  

Prediction of heat transport has long been carried out by both analytical and numerical 

methods. Although analytical solutions fail when dealing with complex geometries or 

nonlinearities, they provide the tools for numerical code testing and also for performing a 

proper sensitivity analysis of the parameters involved in a problem. To simplify the 

mathematical model, some assumptions must be made, such as: the skin tissue is 

homogeneous and isotropic, the skin tissue properties are independent of skin 

temperature, heat generated by metabolism is constant, blood perfusion rate is uniform 

spatially and temporally and independent of tissue temperature, and arterial blood 

temperature is constant. In most of the existing analytical studies, the solutions to the bio-

heat transfer problem are available for the cases with one dimensional geometry, steady-

state, and constant heating. 

Even if the solution method is the author's choice, the application of some methods 

requires the fulfilment of certain conditions, and the choice of method itself depends on 

the chosen human body model and thermal properties of the exposed body model. Next 

section deals with to the description of the analytical approach for solving PBHE used in 

our study. 

 

5.3 Thermal dosimetry - Analytical procedure 

In the framework of thermal dosimetry the stationary one-dimensional PBHE in biological 

tissues is considered. This approach does not take into account dependence. The simplicity 

of the mathematical expression facilitates parametric analysis [102] and provides 

relatively simple analysis in multi-layer tissue modelling [22]. The case of a single-layer 

and 3-layer human body model is considered and depicted in Fig. 49 and Fig. 50, 

respectively. 

 

Figure 5.4 Geometry of the single-layer problem 
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Figure 5.5 Geometry of the 3-layer human body model 

The both models are derived under the assumption that the tissues inside human body are 

homogeneous and isotropic, that the properties of the tissues are independent of the skin 

temperature, that the heat generated by metabolism is constant, that the blood perfusion 

rate is uniform spatially and temporally and independent of the tissue temperature, and 

that arterial blood temperature is constant. The human body is assumed to be at a constant 

initial temperature until the start-up of the EM exposure process. In rest of this chapter, 

for models shown on Fig. 49 and Fig. 50, the mathematical details are presented. 

Our goal is to analytically solve the PBHE in single-layer human body model (with muscle 

tissue characteristics), and in a planar 3-layer human body model (composed of skin-fat-

muscle tissue). The solution of PBHE variant used in the thesis is encompasses three steps 

− reduce the number of parameters in the parametric analysis, by observing the state 

before exposure to the EM field (described by the constant temperature in all 

tissues for single-layer and 3-layer model), and then  

− introduce a new variable related to the temperature change in the stationary state 

in relation to the state before exposure to the EM field, instead of observing the 

final temperature in the stationary state.  

Now starting from one-dimensional steady-state PBHE [143] 

λ
(∂2T(x))

∂x2
+ hb(Tb − T(x)) + Qm + SAR(x)ρ = 0  (5.21) 

we assume that the basic temperature of human body before EM exposure was 𝑇𝑎 

(constant in all parallelepiped human body model and for single-layer and 3-layer 

geometry). Temperature change due to EM exposure is: 
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u(x) = T(x) − Ta  (5.22) 

where 

- T(x) is a steady-state temperature in human body and it is function of depth. 

Inserting T(x) = u(x) + Ta in (5.21), one obtains the following set of relations: (5.26). 

λ
∂2

(∂x2)
(u(x) + Ta) − hb(u(x)) + Qm + SAR(x)ρ = 0  (5.23) 

∂2u(x)

∂x2
−
hb
λ
 u(x) = − [

ρSAR(x) + Qm
λ

] (5.24) 

−[
ρSAR(x) + Qm

λ
] = f(x) (5.25) 

u′′(x) −
hb
λ
u(x) = f(x) (5.26) 

The resulting modified equation (5.26) describing the heat transfer in tissue can be solved 

analytically for single-layer geometry and 3-layer geometry using the classical theory of 

ordinary differential equations. The temperature elevation is described by the 

superposition of the solution of the homogeneous linear equation and the solution of the 

particular linear equation (within each tissue layer)  

u(x, t) = uH(x, t) + uP(x, t)  (5.27) 

where 

- u(x, t) is the temperature elevation presented by the nonhomogeneous bio-heat 

problem, 

- uH(x, t) is the general solution of the corresponding homogeneous equation, and 

- uP(x, t) represents the particular solutions of the corresponding nonhomogeneous 

equation. 

The general solution of homogeneous differential equation is given in the form: 

uHi(x) = Aie
−√

hbi
λi
x
+ Bie

√
hbi
λi
x
, i=1,2,3 

(5.28) 

The value of the constants in the (5.28) in each tissue layer in human body can be 

determined using appropriate BCs at the boundaries between two layers. This method is 
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called the variation of constants and is very suitable for linear systems, while it is more 

difficult to apply this approach to non-linear systems [24].  

To solve the Pennes’ equation analytically, power density from external heat source 

related to the absorbed part of EM energy irradiated from VED antenna, is assumed to 

either be constant, or exponentially decreasing with the tissue depth. Since f(x) (from 

(5.25) and (5.26)) depends of SAR(x) and some constants, and SAR(x) is known, f(x) is 

further assumed to be constant or exponential decaying function, which further implies 

uPM1(x) =  Const (5.29) 

uPM2(x) =  Ce
−2x + D  (5.30) 

As (5.29) and (5.20) must also satisfy (5.26) it follows: 

uPM1i(x) =  
ρiSARimax

hbi
+
Qmi
hbi

 (5.31) 

uPM2i(x) =  − (
ρiSARimax
4λi−hbi

) e−2x +
Qmi
hbi

 
(5.32) 

The total solutions for temperature elevation and resulting steady-state temperature with 

assumed constant EM power density throughout the tissues in human body are given by: 

uM1i(x) = AM1ie
−√

hbi
λi
x
+ BM1ie

√
hbi
λi
x
+  

ρiSARmaxi(x)+Qmi

hbi
, i = 1,2,3  (5.33) 

TM1i(x) = AM1ie
−√

hbi
λi
x
+ BM1ie

√
hbi
λi
x
+  

ρiSARmaxi(x)+Qmi

hbi
+ Ta,  

i=1,2,3 

(5.34) 

The total solution for the temperature elevation and resulting steady-state temperature 

with assumed EM power density that exponentially decays with the tissue depth are given 

by: 

uM2i(x) = AM2ie
−√

hbi
λi
x
+ BM2ie

√
hbi
λi
x
− (

ρiSARimax

4λi−hbi
) e−2x +

Qmi

hbi
,   

i=1,2,3 

(5.35) 
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TM2i(x) = AM2ie
−√

hbi
λi
x
+ BM2ie

√
hbi
λi
x
− (

ρiSARimax

4λi−hbi
) e−2x +

Qmi

hbi
+ Ta  

i=1,2,3 

(5.36) 

where 

- ρ is the density of muscle tissue for single-layer geometry,  

- ρi, 𝑖 = 1,2,3  is the density for skin, fat and muscle for 3-layer geometry, 

- SARi, 𝑖 = 1,2,3   is the maximum SAR at the surface of skin, fat and muscle tissue 

for 3-layer geometry, 

- Qmi, 𝑖 = 1,2,3 is the metabolic heat generated in skin, fat and muscle tissue for 3-

layer geometry, and  

- hbi, 𝑖 = 1,2,3 is blood perfusion in skin, fat and muscle tissue for 3-layer 

geometry.  

Maximum SAR value at surface of skin, fat and muscle tissue are: 

SAR1(X0 = 0) = SARMAX (5.37a) 

SAR2(X1 = d1) = SARMAXe
−2d1 (5.37b) 

SAR3(X2 = d2) = SARMAXe
−2d1e−2d2 (5.37c) 

Constants 𝐴𝑖 and 𝐵𝑖 for single-layer and for 3-layer geometry, can be defined by 

prescribing BCs: 

BC: Air-Skin (𝑥0
 = 0) 

−λ1
∂Ti

∂x
(x0
 = 0) = h(Ti(x0

 = 0) − Tair)  (5.38) 

BC: Skin-SAT and SAT-Muscle (𝑥1
 = d1

 , 𝑥2
 = d2

 ) 

λi−1
∂Ti−1

∂x
(xi
−) = λi

∂Ti

∂x
(xi
+)  (5.39) 

Ti(xi
−) = Ti(xi

+)  (5.40) 

BC 4: At penetration depth 
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T3(x3
 = d3

 = L1) = Ta  (5.41) 

The total solution for steady-state temperature with assumed constant EM power density 

throughout the tissues in human body 

TM1(x) = AM1e
−√

hb
λ 
x
+ BM1e

√
hb
λ 
x
+  

ρ  SARmax(x)+Qm

hb
+ Ta  (5.42) 

AM1 =

(

 
 
 
 

− 

−
h

λ
(s1   +Ta−Tair)+s4    

(

 
 
s1    e

√
hb
λ 
L1

)

 
 

{
 
 

 
 

s3   −s4    e
2√
hb
λ 
L1
 

}
 
 

 
 

 e
2√

hb
λ 
L1 −  

ρ  SARmax+Qm

hb
e
√
hb
λ 
L1 

)

 
 
 
 

  (5.43) 

BM1 =

−
h

λ
(s1   +Ta−Tair)+s4    

(

 
 
s1    e

√
hb
λ 
L1

)

 
 

{
 
 

 
 

s3   −s4    e
2√
hb
λ 
L1
 

}
 
 

 
 

  (5.44) 

Details of the mathematical procedure used to obtain the solution for the steady-state 

temperature in single-layer human body with assumed constant EM power density 

throughout the tissues are given in Appendix C.  

The total solution for the steady-state temperature with assumed EM power density that 

exponentially decays with the tissue depth is given by following relation: 

TM2(x) = AM2e
−√

hb
λ 
x
+ BM2e

√
hb
λ 
x
− (

ρ  SARmax
4λ  −hb 

) e−2x +
Qm
hb
  (5.45) 

AM2 = −

−
h

λ
(−s2   +

Qm
hb
+Ta−Tair)−2s2   −s4    

{
 
 

 
 

s2    e
−2L1e

√
hb
λ 
L1
−
Qm
hb
e

√
hb
λ 
L1

}
 
 

 
 

{
 
 

 
 

 s3−  s4e
2√
hb
λ 
L1

}
 
 

 
 

 

 e
2√

hb
λ 
L1 +

s2e
−2L1e

√
hb
λ 
L1 −

Qm

hb
e
√
hb
λ 
L1

  

(5.46) 
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BM1 =

−
h

λ
(−s2 +

Qm
hb
+Ta−Tair)−2s2 − s4 

{
 
 

 
 

  s2e
−2L1e

√
hb
λ 
L1
−
Qm
hb
e

√
hb
λ 
L1

}
 
 

 
 

{
 
 

 
 

 s3− s4 e
2√
hb
λ 
L1

}
 
 

 
 

  (5.47) 

where coefficients 

- s1 =
ρSARmax+Qm

hb
 

- s2 =
ρ  SARmax

(4λ1−hb1)
 

- s3 = (√
hb

λ
+
h

λ
), and 

-  s4 = (
h

λ
−√

hb

λ
). 

Further mathematical details are available in Appendix D. The resulting solutions for 

steady-state temperature after EM exposure in skin, fat and muscle tissue with assumed 

constant EM power density throughout skin, fat and muscle respectively are:  

T1(x) = A1e
−√

hb1
λ1
x
+ B1e

√
hb2
λ1
x
+  

ρ1SARmax1+Qm1

hb1
+ Ta,  

 X0 ≤ 𝑥 ≤ X1  

(5.50) 

T2(x) = A2 e
−√

hb2
λ2
x
+ B2 e

√
hb2
λ2
x
+  

ρ2SARmax2+Qm2

hb2
+ Ta,  

 X1 ≤ 𝑥 ≤ X2  

(5.51) 

T3(x) = A3e
−√

hb3
λ3
x
+ B3 e

√
hb3
λ3
x
+  

ρ3SARmax3+Qm3

hb3
+ Ta, X2 ≤ 𝑥 ≤ X3  (5.52) 

The coefficients used in (5.50), (5.51), and (5.52) are given in Table 5.1. 

Table 5.1 Coefficients used in (5.50), (5.51), and (5.52) 

A1 0.5e
√
hb1
λ1
d1{a11 B3 + a12} 

B1 0.5e
−√

hb1
λ1
d1{b11B3 + b12} 
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A2 0.5e
√
hb2
λ2
d2[a21B3 + a22] 

B2 0.5e
−√

hb2
λ2
d2[b21B3 + b22 ] 

A3 −B3 e
2l31 − s3e

l31  

B3 

−a120.5e
√
hb1
λ1

d1
+0.5c1b12e

−√
hb1
λ1

d1
+c2( s1+Ta−Tair)

(

 
 
0.5a11e

√
hb1
λ1

d1
−0.5b11c1e

−√
hb1
λ1

d1

)

 
 

  

a11 [0.5a21 (1 + √
λ1hb2

λ2hb1
) e

√
hb2
λ2
d2
e
−√

hb2
λ2
d1
+ 0.5b21 (1 − √

λ1hb2

λ2hb1
) e

−√
hb2
λ2
d2
e
√
hb2
λ2
d1
]  

a12 

0.5a22 (1 + √
λ1hb2

λ2hb1
) e

√
hb2
λ2
d2
e
−√

hb2
λ2
d1
 + 0.5b22 (1 −

√
λ1hb2

λ2hb1
) e

−√
hb2
λ2
d2
e
√
hb2
λ2
d1
  +

ρ2SARmax2+Qm2

hb2
−
ρ1SARmax1+Qm1

hb1
  

b11 [0.5a21 (1 − √
λ1hb2

λ2hb1
) e

√
hb2
λ2
d2
e
−√

hb2
λ2
d1
+ 0.5b21 (1 + √

λ1hb2

λ2hb1
) e

−√
hb2
λ2
d2
e
√
hb2
λ2
d1
]  

b12 

0.5a22 (1 − √
λ1hb2

λ2hb1
) e

√
hb2
λ2
d2
e
−√

hb2
λ2
d1
 + 0.5b22 (1 +

√
λ1hb2

λ2hb1
) e

−√
hb2
λ2
d2
e
√
hb2
λ2
d1
 +

ρ2SARmax2+Qm2

hb2
−
ρ1SARmax1+Qm1

hb1
  

a21 (1 − √
λ2hb3

λ3hb2

 

 ) e
√
hb3
λ3
d2
− e2l31 (1 + √

λ2hb3

λ3hb2

 

 )

 

 e
−√

hb3
λ3
d2

  

a22 − s3 (1 + √
λ2hb3

λ3hb2

 

 ) e
−√

hb3
λ3
d2
el31

 

+
ρ3SARmax3+Qm3

hb3
−
ρ2SARmax2+Qm2

hb2
  

b21 [(1 + √
λ2hb3

λ3hb2

 

 ) e
√
hb3
λ3
d2
− (1 − √

λ2hb3

λ3hb2

 

 ) e
−√

hb3
λ3
d2
 e2l31]  

b22 − s3e
l31 (1 − √

λ2hb3

λ3hb2

 

 ) e
−√

hb3
λ3
d2
+ 

ρ3SARmax3+Qm3

hb3
−
ρ2SARmax2+Qm2

hb2
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l31 √
hb3
λ3
L1 

s1 
ρ1SARmax1 + Qm1

hb1
 

s2 
ρ2SARmax2 + Qm2

hb2
 

s3 
ρ3SARmax3 + Qm3

hb3
 

c1 
√λ1hb1 + h

√λ1hb1 − h
 

c2 
h

√λ1hb1 − h
 

The resulting solutions for steady-state temperature after EM exposure in skin, fat and 

muscle tissue with assumed EM power density that exponentially decays with the tissue 

depth are:  

T1(x) = AM21e
−√

hb
λ1
x
+ BM21e

√
hb
λ1
x
− (

ρ1SAR1max

4λ1−hb1
) e−2x +

Qm1

hb1
+ Ta,  

X0 ≤ 𝑥 ≤ X1  

(5.53) 

T2(x) = AM22 e
−√

hb
λ2
x
+ BM22 e

√
hb
λ2
x
− (

ρ2SAR2max

4λ2−hb2
) e−2x +

Qm2

hb2
+ Ta,   

X1 ≤ 𝑥 ≤ X2  

(5.54) 

T3(x) = AM23e
−√

hb
λ3
x
+ BM23 e

√
hb
λ3
x
− (

ρ3SAR3max

4λ3−hb3
) e−2x +

Qm3

hb3
+ Ta, X2 ≤

𝑥 ≤ X3  

(5.55) 

The coefficients used in (5.53), (5.54), and (5.55) are given in Table 5.2. 
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Table 5.2 Coefficients used in (5.53), (5.54), and (5.55) 

A1 
0.5e

√
hb1
λ1
d1{a11 B3 + a12} 

B1 
0.5e

−√
hb1
λ1
d1{b11B3 + b12} 

A2 
0.5e

√
hb2
λ2
d2[a21B3 + a22] 

B2 
0.5e

−√
hb2
λ2
d2[b21B3 + b22 ] 

A3 
−B3 e

2l31 + s3e
l31e−2L1 −

Qm3
hb3

el31  

B3 
−a120.5e

√
hb1
λ1
d1
+ 0.5c1b12e

−√
hb1
λ1
d1
+ c2 ( −s1 +

Qm1
hb1

+ Ta − Tair) +
2λ1c2s1
h

(0.5a11e
√
hb1
λ1
d1
− 0.5b11c1e

−√
hb1
λ1
d1
)

 

a11 
[b210.5 (1 − √

λ1hb2

λ2hb1
) e

−√
hb2
λ2
d2
e
−√

hb2
λ2
d1
+  a210.5 (1 +

√
λ1hb2

λ2hb1
)  e

√
hb2
λ2
d2
e
−√

hb2
λ2
d1
]  

a12 
a220.5 (1 + √

λ1hb2

λ2hb1
)  e

√
hb2
λ2
d2
e
−√

hb2
λ2
d1
+ b220.5 (1 −

√
λ1hb2

λ2hb1
)  e

−√
hb2
λ2
d2
e
−√

hb2
λ2
d1
− s2e

−2d1 +
Qm2

hb2
+ s1e

−2d1 −
Qm1

hb1
−

2
λ2

λ1
√
λ1

hb1
s2e

−2d1 + 2
λ2

λ1
√
λ1

hb1
s1e

−2d1  

b11 
[b210.5e

−√
hb2
λ2
d2
(1 + √

λ1hb2

λ2hb1
) e

−√
hb2
λ2
d1
+  0.5e

√
hb2
λ2
d2
(1 −

√
λ1hb2

λ2hb1
) e

−√
hb2
λ2
d1
a21]  
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b12 
0.5e

√
hb2
λ2
d2
(1 − √

λ1hb2

λ2hb1
) e

−√
hb2
λ2
d1
a22 + 0.5e

−√
hb2
λ2
d2
(1 +

√
λ1hb2

λ2hb1
) e

−√
hb2
λ2
d1
b22 − s2e

−2d1 +
Qm2

hb2
+ s1e

−2d1 −
Qm1

hb1
+

2
λ2

λ1
√
λ1

hb1
s2e

−2d1 − 2
λ2

λ1
√
λ1

hb1
s1e

−2d1  

a21 
[(1 − √

λ2hb3

λ3hb2
) e

√
hb3
λ3
d2
− (1 + √

λ2hb3

λ3hb2
) e2l31e

−√
hb3
λ3
d2
]  

a22 
+ s3 (1 + √

λ2hb3

λ3hb2
) el31e−2L1e

−√
hb3
λ3
d2
− (1 + √

λ2hb3

λ3hb2
)
Qm3

hb3
el31e

−√
hb3
λ3
d2
−

s3e
−2d2 +

Qm3

hb3
+ s2e

−2d2 −
Qm2

hb2
− 2

λ3

λ2
√
λ2

hb2
s3e

−2d2 + 2
λ3

λ2
√
λ2

hb2
s2e

−2d2  

b21 
(1 + √

λ2hb3

λ3hb2
) e

√
hb3
λ3
d2
− (1 − √
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Details of the mathematical procedure used to obtain the solution for the steady-state 

temperature in 3-layer human body and the proposed approaches is described in Appendix 

E and Appendix F.  

 

5.4 Results for temperature increase in tissue 

Figure 5.6 shows the comparation between tissue temperature vs tissue depth obtained via 

steady-state with constant EM power density and steady-state with EM power density that 

decays exponentially with tissue depth, when maximum external heat is generated by 

external EM source and in single-layer muscle tissue. Nominal values for thermal 

parameters are given in Table 5.3. 

Table 5.3 The nominal values for the thermal parameters 

Thermal parameters Nominal values 

Thermal conductivity:  𝜆 [𝑊 𝑚℃⁄ ] 0.49 

Blood perfusion rate: 𝑊𝑏 [𝑊𝑘𝑔 𝑠𝑚3⁄ ] 2100 

Arterial blood temperature: 𝑇𝑎 [℃] 37 

Power produced by metabolic process: 𝑄𝑚[𝑊 𝑚3⁄ ] 
300 

Convection coefficient: ℎ[𝑊 𝑚2℃⁄ ] 7 

Temperature of the air: 𝑇𝑎𝑖𝑟[℃] 25 

 

Figure 5.6 Tissue temperature vs tissue depth in single-layer tissue model for 𝜆 =

0.49, 𝑊𝑏 = 2100, 𝑇𝑎 = 37, 𝑄𝑚 = 300, ℎ = 7, and 𝑇𝑎𝑖𝑟 = 25 
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The maximum SARmax applied on the surface of muscle tissue is 1.4024∙ 10−6
W

kg
. 

According to Fig. 5.6, the highest temperature increase occurs at the surface of tissue 

(maximum obtained temperature at skin surface is 40.25 ℃. Note that the same conclusion 

is highlighted in [144, 118]. The discrepancies between the results obtained via different 

approaches for the case of single-layer is negligible (< 0.01 %). 

In Fig. 5.7, the family of curves illustrates tissue temperature vs tissue depth in single-

layer tissue model for different values of power produced by metabolic process. Changes 

are 50 % around typical value given in Table 5.3. 

 

Figure 5.7 Tissue temperature vs tissue depth in single-layer tissue model for 

different values of power produced by metabolic process, 𝜆 = 0.49, 𝑊𝑏 = 2100, 

𝑇𝑎 = 37, ℎ = 7, and 𝑇𝑎𝑖𝑟 = 25 

Fig. 5.7 shows that skin surface temperature increases with metabolic heat, while slope in 

the temperature flow path to the boundary remains almost constant. The effect of blood 

perfusion rate on the temperature distribution vs tissue depth in single-layer tissue model 

is illustrated in Fig. 5.8.  

 

Figure 5.8 Tissue temperature vs tissue depth in single-layer tissue model for 

different blood perfusion rate, 𝜆 = 0.49, 𝑇𝑎 = 37, 𝑄𝑚 = 300, ℎ = 7, and 𝑇𝑎𝑖𝑟 = 25 
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The curves indicate that the gradient of the temperature variation decreases as blood 

perfusion increases. The simulation results presented in Fig. 5.9 shows the tissue 

temperature vs tissue depth in single-layer tissue model for different tissue thermal 

conductivities. 

 

Figure 5.9 Tissue temperature vs tissue depth in single-layer tissue model for 

different tissue thermal conductivities, 𝑊𝑏 = 2100, 𝑇𝑎 = 37, 𝑄𝑚 = 300, ℎ = 7, and 

𝑇𝑎𝑖𝑟 = 25 

Curves of temperature elevation on the body surface decreases monotonically with 

increasing blood perfusion rate and thermal conductivity. Fig. 5.10 and 5.11 show the 

influence of the surrounding environment expressed through heat exchange coefficient 

and ambient temperature on tissue temperature vs tissue depth in single-layer tissue 

model. 

 

Figure 5.10 Tissue temperature vs tissue depth in single-layer tissue model for 

different heat exchange coefficient, 𝜆 = 0.49, 𝑊𝑏 = 2100, 𝑇𝑎 = 37, 𝑄𝑚 = 300, and 

𝑇𝑎𝑖𝑟 = 25 
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Figure 5.11 Tissue temperature vs tissue depth in single-layer tissue model for 

different ambient temperature, 𝜆 = 0.49, 𝑊𝑏 = 2100, 𝑇𝑎 = 37, 𝑄𝑚 = 300, and ℎ =

7 

Based on Fig. 5.10 the higher the outer coefficient of heat transfer h, the higher the 

temperature near body surface. On the other hand, the higher value of ambient 

temperature, significantly decreases the temperature near the body surface (Fig. 5.11). 

Figure 5.12 shows the tissue temperature vs tissue depth obtained for various analytical 

approaches and proposed analytical approach with assumed constant EM power density 

and EM power density that exponentially decays with the tissue depth. The results of our 

models are compared to eight other analytical approaches described in [9, 22, 25, 100, 

104, 112, 113, 145]. The comparation is done using nominal parameters presented in 

Table 5.4. 

In the study [25] the stochastic model of bio-heat transfer equitation for the assessment of 

the temperature distribution in the biological tissue is presented. Study [145] solves 

transient PBHE using numerical technique based on Haar wavelets. A one-dimensional 

steady-state bio-heat transfer model of temperature distribution in cylindrical living tissue 

using numerical approximation technique the Galerkin Finite element method is discussed 

in [113]. A study [22] deals with the thermal response due to plane wave illuminating the 

human tissue composed of N biological layers, where the solution method arises from 

classical theory of differential equations, and pertaining to the steady-state. In [104] FEM 

is used to analyze 1D bio-heat transfer in human tissue. A simplified one-dimensional bio-

heat transfer model of the spherical living tissues in the steady-state has been set up for 

application in heat transfer studies based on the Pennes’ bio-heat transfer equation and its 

corresponding analytical solution by using Bessel’s functions is derived [112]. In [100] 
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the analytical method used to solve the transient Pennes’ equation is the Laplace method. 

Our results are obtained for the special case with constant heat flux. A closed form 

analytical solution to the generalized 1-D Pennes equation is described in [9]. 

 

 

Figure 5.12 Tissue temperature vs tissue depth in single-layer tissue model: 

comparation with other analytical methods for 𝜆 = 0.49, 𝑊𝑏 = 2100, 𝑇𝑎 = 37, 

𝑄𝑚 = 300, ℎ = 7, and 𝑇𝑎𝑖𝑟 = 25 

Table 5.4 The values for the thermal parameters 

Nominal 

values of 

thermal 

parameters 𝜆
 [
𝑊

𝑚
℃

⁄
] 

𝑊
𝑏
 

[ 𝑊
𝑘
𝑔
𝑠𝑚

3
⁄

]  

𝑇 𝑎
 

[℃
] 

𝑄
𝑚

 
[ 𝑊

𝑚
3

⁄
]  

ℎ
 

[ 𝑊
𝑚
2
℃

⁄
]  

𝑇 𝑎
𝑖𝑟

 
[ ℃
]  

t [s
] 

Our model 0.49 2100 37 300 7 25 - 

Šušnjara et 

al., 2019 
0.5 2100 37 33800 10 25 - 
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Awana i 

Shah, 2019 
0.5 2000 37 420 - - 0.6 

Pandey, 

2015 
0.48 11550 37 1085 10.023 25 - 

Zilberti et al. 

2013 
0.49 2100 37 300 7 25 - 

Bagum et al., 

2013 
0.5 2100 37 33800 10 25 - 

Hossain and 

Mohammadi, 

2013 

0.48 11550 37 1085 8.77 25 - 

Shih et al., 

2007 
0.49 2100 37 300 7 25 1800 

Deng i Liu, 

2002 
0.5 2100 37 33800 10 25 0 

Fig. 5.12 shows that significantly higher values of temperature are obtained in studies [9, 

25, 104]. Based on Table 5.4 these studies used the nominal value of metabolic heat 

significantly higher (Qm = 33800  W m3⁄ ) compared to [22, 100, 145] which results in 

similar temperature values regardless of tissue depth (difference is less than 1 ℃). This 

confirms that changes in metabolic heat generation elevates the inner tissue temperature 

magnitudes.  

Furthermore, significantly smaller values of obtained temperature, as in [112, 113] 

according to Table 5.4 are caused by a significantly higher blood perfusion (> 5 times 

higher) compared to other studies, and a higher coefficient of heat exchange at the 

boundary between the tissue and the environment.  

On the basis of the previous analysis, Figure 5.12 and Table 5.4, a clear conclusion is 

imposed that the results of our models agree satisfactorily with the models of other authors 

described in [9, 22, 25, 100, 104, 113, 145]. Maximal difference is below 50 %. 

Figure 5.13 shows the tissue temperature vs tissue depth obtained for our 3-layered models 

with assumed constant EM power density and EM power density that exponentially 

decays with the tissue depth, and the ones obtained in [115, 143, 146, 147]. The 

comparation is carried out using nominal parameters presented in Table 5.5. 
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Figure 5.13 Tissue temperature elevation vs tissue depth in 3-layer tissue model: 

comparation with other analytical methods, 𝜆𝑠𝑘𝑖𝑛 = 0.42, 𝜆𝐹𝐴𝑇 = 0.25, 𝜆𝑚𝑢𝑠𝑐𝑙𝑒 =

0.50, 𝑑𝑠𝑘𝑖𝑛 = 1, 𝑑𝐹𝐴𝑇 = 2, 𝑎𝑛𝑑 𝑑𝑚𝑢𝑠𝑐𝑙𝑒 = 26 

Table 5.5 The values for the thermal parameters in 3-layer models 

Nominal 

values of 

thermal 

parameters 

Our 

models 

Alekseev 

& Ziskin, 

2009 

Kanezaki 

et al., 

2010 

Zilberti 

et al., 

2014 

Ziskin et 

al., 2018 

𝜆𝑠𝑘𝑖𝑛, 𝜆𝑓𝑎𝑡, 

𝜆𝑚𝑢𝑠𝑐𝑙𝑒 

[𝑊 𝑚℃⁄ ] 

0.42, 

0.25, 

0.50 

(0.32+0.3

2, 0.16, 

0.32 

0.42, 

0.25, 

0.50 

0.37, 

0.21, 

0.49 

(0.32+0.

32), 0.18, 

0.43 

𝑑𝑠𝑘𝑖𝑛, 𝑑𝑓𝑎𝑡, 

𝑑𝑚𝑢𝑠𝑐𝑙𝑒 

[𝑚𝑚] 

1, 2, 26 
(0.1+1.5)

, 8, ∞ 

1, 3.5, 

55.5 
1, 3.5, ∞ 

(1.2+0.0

5), 4, ∞ 

ℎ𝑏 

[𝑊𝑘𝑔 𝑠𝑚3⁄ ] 

9100, 

1700, 

2700 

2469600, 

7585.2, 

940212 

9100, 

1700, 

2700 

7441, 

1903, 

2691 

2469600, 

529200, 

940212, 

𝑇𝑎[℃] 37 36.8 32 - 37 
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*SAR= (Incident) Power Density/ 𝜌𝑠𝑘𝑖𝑛  

In [146] authors tested 4 tissue models consisting of 1 to 4-layers and applied the one-

dimensional steady-state hybrid bio-heat equation (HBHE) which incorporates a blood 

flow dependent effective thermal conductivity. In [115] an analytical solution for a bio-

heat equation is derived by using the Laplace transform for the one-dimensional 3-layer 

(skin, fat and muscle) and single-layer (skin) models due to millimeter-wave exposure. 

The investigation of the effect of relevant physical parameters on transient temperature 

elevation induced in human tissues (3-layer model) by EM waves in the terahertz (THz) 

band was is reported in [143]. A series of modeling studies is undertaken using the 3-layer 

and 4-layer models exposed to mm waves in [147]. The analysis is based on an IPD of 

200 W/m2 at 42 GHz. Sensitivity analysis for model parameters in the 4-layer model, 

assuming 10 % variations in the thickness and blood flow of different tissue layers is 

performed, as well. 

It is clearly noticeable that the wave form of our approaches and the approaches described 

in [115, 143, 146, 147] is the same. Deeper in the tissue, further from the radiation source, 

𝑄𝑚𝑠𝑘𝑖𝑛, 

𝑄𝑚𝑓𝑎𝑡, 

𝑄𝑚𝑢𝑠𝑐𝑙𝑒 

[𝑊 𝑚3⁄ ] 

1620, 

300, 

480 

0, 0, 0 
1620, 

300, 480 
- 0, 0, 0 

ℎ[𝑊𝑘𝑔 ℃𝑚2⁄ ] 7 - 7 7 8.48 

𝑇𝑎𝑖𝑟[℃] 25 22 23.6 - 22 

𝜌𝑠𝑘𝑖𝑛, 𝜌𝑓𝑎𝑡, 

 𝜌𝑚𝑢𝑠𝑐𝑙𝑒  

[𝑘𝑔 𝑚3⁄ ] 

1100, 

920, 

1040 

(1622+ 

1540), 

633, 

1222 

1100, 

920, 

1040 

- 

(1622+ 

1540), 

633, 

1222 

𝑆𝐴𝑅0[𝑊 𝑘𝑔⁄ ] 
0. 14

∙ 10−7 
- - - - 

Power 

Density 

[𝑊 𝑚2⁄ ] 

- 200 50 10 2080 

f [GHz] 3 42 60 1000 42.5 

t[s] - - - 92 - 
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the difference in temperature elevation decreases. Our models describe tissue temperature 

under the condition of maximum SAR on the surface of the human body, so they give the 

upper limit is the temperature change in stationary conditions. Further on, they are 

mathematically simple and agree well with the models already implemented in practice. 

More appreciable differences in the temperature elevation, primarily on the multi-layered 

tissue surface, may arise due to the large number of parameters in the PBHE. This makes 

the process of comparison rather challenging. Furthermore, different studies use different 

frequencies and power of the EM sources. This highlights the importance of parametric 

analysis in thermal dosimetry, which is presented in Chapter 6. 

Although our analytical solutions cannot be applied to cases with complex geometries 

they will provide useful tools for testing of numerical codes and/or more complicated 

approaches, and for performing SA of the parameters involved in a problem. Although 

simplified, analysis using this equation can still provide valuable information for some 

practical bio-heat transfer problems. 

Yet many engineering applications are affected by a relatively large amount of uncertainty 

in the input data, such as model coefficients, forcing terms, BCs, and geometry [148]. In 

this case, to obtain a reliable temperature prediction, one has to include uncertainty 

quantification (UQ) due to the uncertainty in the input data. 

The values of thermal parameters often exhibit variation around their average, and it has 

been shown by several experiments and numerical simulations that physiological 

responses such as blood perfusion and metabolism in living tissues are temperature- 

dependent [103]. For this reason, the next section presents the stochastic model of the bio-

heat transfer equation to assess the temperature distribution in the biological tissue with 

the aim to incorporate the uncertainties in the tissue thermal parameters aiming to quantify 

the uncertainty in the output temperature. 

 

5.5 Chapter summary 

The experimental measurements of the body thermal response due to EM radiation is not 

possible in healthy humans. The problem of determining the temperature distribution in 

the human body is addressed using analytical method. The analytical solutions have 

important significance in the study of bio-heat transfer because they reflect actual physical 

feature of the equations and can be used as standards to verify the corresponding 

numerical results and as a proof to the reasonability of in-vitro mode analysis. 

The steady-state temperature distribution in the single-layer and 3-layered parallelepiped 

human body, exposed to an incident time harmonic electromagnetic (EM) field, is 

governed by the stationary form of the PBHE. This equation is supplemented by the Robin 

BC.  
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The steady-state temperature distribution in the 3-layered parallelepiped human body, 

exposed to an incident time harmonic electromagnetic (EM) field, is governed by the 

stationary form of the PBHE [126]. This equation is supplemented by the Robin BC. The 

obtained solution is compared to other analytical methods presented in analysed literature. 

The obtained solution gives overestimation of steady-state temperature due to EM 

radiation compared to other analytical methods. 

Proposed models describe tissue temperature under the condition of maximum SAR on 

the surface of the human body, so they give the upper limit is the temperature change in 

stationary conditions. The obtained solution gives overestimation of steady-state 

temperature due to EM radiation compared to other analytical methods. The obtained 

solution is also compared to other analytical methods presented in analysed literature, but 

the large number of parameters in the PBHE, makes the comparation challenging.  

This highlights the importance of parametric analysis in thermal dosimetry in terms oof 

stochastic modelling and sensitivity analysis. Large differences in the temperature 

elevation in different studies appear as a result of the large number of parameters 

configured in the PBHE equation (and the fact that in some studies they are assumed to 

be constan and in other they change with tissue depth) but also due to the different 

approaches used to EM source to modelling. 
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CHAPTER 6 

Stochastic modelling in thermal dosimetry 

 

6.1 Stochastic modelling in computational electromagnetics 

In computational electromagnetics (CEM) the uncertainties of the input parameters 

including the uncertainties in the description of the human body, such as the nature of 

tissues or the morphology of the human body, or in the description of EM source, lead in 

the uncertainties in the assessment of the related EM and/or thermal response. These 

problems could be overcome and a reliable prediction of output can be obtained by 

quantification of uncertainty in the input data. Using combinations of well-established 

deterministic EM models with certain stochastic methods to quantify the uncertainty of 

model input parameters is a new area in EM thermal dosimetry called stochastic dosimetry 

(Fig. 6.1) [114].  

 

Figure 6.1 Deterministic vs Stochastic-Deterministic Model [140] 
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In the past two decades, there have been some efforts to provide the means to include the 

thermal parameter variability into the model and propagate it to the output value of 

interest. The effects of the variability of thermal parameters on the heating of surface 

tissues exposed to a plane millimetre/submillimetre wave is discussed in [143]. According 

to the results of the study, the variability of the temperature increase in the skin depends 

mainly on the electrical/dielectric properties, while in the subcutaneous fat tissue 

temperature increase depends mainly on the thickness of the skin. 

The authors in [149] examined how the variability of brain and eye morphology and tissue 

properties affect the estimation of SAR induced in a homogeneous human brain exposed 

to the HF EM field. Once the deterministic modeling via BEM and BEM/FEM, 

respectively is carried out a stochastic post-processing of the obtained numerical results 

can be performed via SC technique by simply choosing one or more random variables 

depending on the problem of interest. Authors concluded that SC is shown to be robust 

and efficient technique providing a satisfactory convergence rate. 

A stochastic approach to the estimation of temperature increase in human head tissues due 

to exposure to HF EM field is reported in [150]. The work is based on combining a 

deterministic heterogeneous model of the human head with a stochastic method. The 

thermal parameters of the three head tissues are modelled as RVs to observe the influence 

of the input uncertainty on the temperature rise. Volumetric blood perfusion rate and 

thermal conductivity of scalp, skull, and brain tissue are modelled as RVs with a uniform 

distribution. Uncertainty propagation (UP) from input random parameters to the output of 

interest is performed using SC. The presented results provide an insight into the behaviour 

of the model output with respect to parameter variations and enable the ranking of the 

input parameters from those with the greatest to those with the least impact. 

The stochastic model of the bio-heat transfer equation for the assessment of temperature 

distribution in biological tissue from the point of view of biomedical applications of EM 

fields is presented in [25]. The authors highlight the importance of stochastic bio-heat 

transfer in the planning and modelling of biomedical applications of EM fields such as 

EM hyperthermia procedures used in the treatment of certain types of cancer. The 

presented approach accounts for uncertainties in the tissue thermal parameters aiming to 

quantify the uncertainty in the output temperature.  

In [151] electric field induced in the three-compartment head model exposed to HF plane 

wave obtained using the hybrid FEM/BEM approach is coupled with the SC technique. 

The conductivity and relative permittivity of the scalp, skull and brain tissue, respectively, 

are modelled as random variables (RVs) with uniform distribution. The analysis shows 

that the highest impact pertains to scalp permittivity, while skull conductivity impact can 

be considered rather negligible. The results obtained using the three-compartment head 

model confirm that both brain permittivity and conductivity are the parameters most 

significantly influencing the variance of the induced field inside the brain. 
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SC method is combined with TPD in a 2-layered planar tissue model (skin-fat and skin-

muscle) exposed to a plane wave incidence at 10, 30 and 90 GHz in [152]. Tissues’ 

permittivities and conductivities are modelled as uniformly distributed RVs. It is proved 

that SC method is suitable for UQ of TPD when tissue electromagnetic properties exhibit 

random nature. Further on, skin conductivity becomes the most influential parameter as 

observation points are moved deeper into the tissue and by increasing the frequency. There 

is an exception for skin-muscle configuration at 10 GHz where skin permittivity has 

stronger impact than skin conductivity. 

In conclusion, this review of papers in the area of stochastic dosimetry indicates the 

importance of the exact knowledge of thermal parameters of body tissues and sources of 

EM radiation. By taking into account their random nature and propagating it to the output 

we can increase our knowledge about the underlying physical processes and quantify their 

impact on reliability of numerical predictions of the induced electric field and related 

quantities. 

 

6.2 An outline of Stochastic Collocation method for uncertainty 

propagation 

The models used in EM and thermal dosimetry are computationally very demanding as 

they tend to describe complex physical phenomena and environments. Further on, values 

of the various model parameters can vary considerably due to difference in size and/or 

morphology of the models [126]. The usual practice in the EM engineering is to use 

average values of input parameters thus leading to a rough representation of a 

phenomenon.  

However, the uncertainty present in input parameters can be quantified by using the 

statistical/ stochastic tools and propagated to the output value of interest via suitable UP 

method. UQ of the unknown stochastic output of the model is preceded by two steps: the 

UQ of input parameters and UP of uncertainties present in the model inputs to the output 

of interest.  

The UQ of input parameters implies modelling the input parameters as RVs and/or random 

processes. Random input variable is denoted as X, or in the case of more than one random 

input parameters (d), a vector of random input parameters is formed: 

X = [X1, X2, … , Xd]  (6.1) 

In practice RVs representing the input parameters are not standardized in general, and 

vector of random input parameters X has to be transformed into a set of reduced variables 

[153]. Depending on the marginal distribution of each input variable 𝑋𝑘(𝑘 = 1, . . , 𝑑), the 
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associated reduced variable may be standard normal: 𝜉~𝑁(0,1), standard uniform: 

𝜉~𝑈(0,1) or some other variable with standard distribution. The resulting vector of input 

parameters is denoted by: 

𝛏 = [ξ1, ξ2, … , ξd]  (6.2) 

UP refers to the choice and implementation of the stochastic method that is capable of 

solving the stochastic model [114], by propagating uncertainties from the input parameters 

to the output. Given the known deterministic model M, we seek to represent the output Y 

is a function of input RVs.  Different methods exist and they can be classified in several 

ways. The general classification is into the statistical and non-statistical methods. 

Traditional methods for uncertainty propagation are easy to implement as they rely upon 

statistical approaches, e.g. brute force Monte Carlo (MC) sampling [151]. The basic 

principle of non-statistical methods is the representation of the unknown stochastic 

solution as a polynomial in the stochastic space of input parameters [151]. 

Traditional UP methods relaying upon the statistical approaches such as MC sampling, 

could be applied. The advantages of applying the MC method lies in the simplicity of its 

implementation [151], robustness and accuracy [25]. But despite the fact that the sample 

size does not depend on random dimension, it needs to be very high [> 100000] [114, 

140], and the convergence rate is slow [114]. MC based methods are out of the scope of 

this work, and complete definition with thorough discussion can be found elsewhere, e.g. 

[154, 155].   

Various non-statistical techniques available in the literature aim to represent the unknown 

stochastic solution as a polynomial in the stochastic space of input parameters. The two 

spectral discretization-based technique, named the generalized polynomial chaos (gPC) 

and SC method emerged as the most promising substitutes for MC.  

According to the gPC theory the output variable Y is approximated by a polynomial 

expansion [156] 

Y(ξ) ≈ Ŷ(ξ) = ∑ Yiφi(ξ)
P
i=0   (6.3) 

where 

- 𝛏 = [ξ(1), ξ(2), … , ξ(d)] is d input vector, 

- Yi are unknown expansion coefficients to be solved,  

- φi is a suitable multivariate basis of polynomial functions, and  

- P is order of truncated expansion. 

In practice the value of P depends on the total polynomial degree p and number of input 

random variables d [156]: 
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P + 1 = (
d + p
p
) =

(p+d)!

p!d!
  (6.4) 

The polynomial expansion is an analytical relationship between the output Y and the random 

input parameters 𝝃 = [𝜉(1), 𝜉(2), … , 𝜉(𝑑)] thus providing a sort of a surrogate for the original 

deterministic model. With P large enough the polynomial representation is quite accurate and 

the statistical information can be obtained. Since gPC is intrusive1 in nature it will requires 

the change of governing equations which can be challenging when they take complicated 

forms [151]. 

The second non-statistical approach relies on the SC techniques. The non-intrusive nature 

of SC enables the use of previously validated deterministic models as black boxes in 

stochastic computations [114]. The expansion coefficients for the SC are actually the 

deterministic outputs of the considered model, calculated at 𝑁𝑠𝑐 predetermined input 

points also called the collocation points. Similarly, to the gPC theory, the fundamental 

principle of SC lies in the polynomial approximation of the considered output Y for d 

dimensional stochastic space [156]. 

Ŷ(𝛏) = ∑ Lk(ξ)Y
kN

k=1   
(6.5) 

where 

- Lk(𝛏) is basis function, 

- Yk is the output realization for the k-th input point, and 

- N is the total number of deterministic simulations needed to construct the surrogate 

model of output. 

The advantage of the SC method is its simplicity, strong mathematical background, and 

the polynomial representation of stochastic output. Although the total number of samples 

required for stochastic analysis is lower than in case of MC, the SC method suffers from 

the “curse of the dimensionality” for large number of input RVs. 

Stochastic mean, variance, standard deviation, skewness, and kurtosis are given as follow 

[156]: 

μ(Ŷ) = ∑ Ykwk
N
k=1   (6.6) 

 
1 The intrusiveness implies a more demanding implementation since new codes need to be developed, while 

the non-intrusive methods enable the use of previously validated deterministic models as black boxes in 

stochastic computations. 
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Var(Ŷ) =∑(Yk)
2
wk

N

k=1

− μ2 (6.7) 

Std(Ŷ) = √Var(Ŷ) (6.8) 

skew(Ŷ) ≈
∑ (Yk)3wk
N
k=1 −3μ(Ŷ)Var(Ŷ)−(μ(Ŷ))

3

(Std(Ŷ))2Var(Ŷ)
  (6.9) 

kurt(Ŷ) ≈
∑ (Yk)4wk
N
k=1 −4μ(Ŷ)skew(Ŷ)(Std(Ŷ))2Var(Ŷ)−6(μ(Ŷ))

2
(Var(Ŷ))−μ4

(Var(Ŷ))4
  (6.10) 

where 

- 𝑤𝑘 is the weight of k-th input point precomputed according to the chosen Gauss-

Legendre quadrature and uniform distributions. 

The standard deviation is important for the crude estimation of confidence intervals. 

Therefore, the confidence intervals (CI) used in this thesis is for 95 % level of confidence: 

CI = Mean(T) ± 2 ∗ Std(T)  (6.11) 

Confidence intervals play an important role in the comparison with RLs and BRs defined 

by ICNIRP and IEEE since they define the range in which the output value is expected 

with a certain level of confidence. In SC two important questions are questions pertaining 

to the choice of basis function and collocation points. It is worth mentioning that, although 

Lagrange polynomials are mostly used for the polynomial representation of the stochastic 

output, other types of basis functions are also possible [114]. Lagrange polynomials have 

the character of locally global basis functions, while piecewise linear basis functions are 

used when it is important to capture discontinuous issues in stochastic solutions.  

The choice of the collocation points is essential part of any collocation-based method. The 

aim of SC method is to approximate following integral as accurate as possible:  

wi = ∫ Lk(𝛏)p(𝛏)d𝛏
 

Γ
  (6.12) 

where 

− p(𝛏) is joint probability density function of input RVs. 
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The weights 𝑤𝑖 are computed numerically. When stochastic dimension space is one-

dimensional (𝑑 = 1) the point selection is straightforward. There are numerous numerical 

studies proposing wide range of quadrature rules to deal with the 1-dimensional integral 

evaluation and the optimal choice is Gauss quadrature [156].  

The most natural approach to multi-dimensional integration is the tensor product of 1-

dimensional quadrature rules which leads to relatively simple generalization of integration 

properties from one-dimensional to d-dimensional case [156]. The multivariate basis 

functions 𝐿𝑘(𝝃) are also formed by means of a tensor product of a univariate basis 

functions in each dimension: 

Lk(𝛏) = l(ξ1
(i))⨂l(ξ2

(i))⨂  …⨂ l(ξd
(i))   (6.13) 

The total number of simulation points is thus: 

NSC = ∏ mk
d
k=1   (6.14) 

In most of the applications the number of collocation points in each dimension is equal, 

thus  

NSC = (mk)
d  (6.15) 

Obviously, the number of simulation points grows exponentially with the number of input 

RVs, therefore the tensor product is mostly used at lower dimensions. The generally 

accepted limitation is 𝑑 ≤  5 [157]. The idea behind the sparse grids is to alleviate the 

problem of a “curse of dimensionality” present in the tensor product by using a sparse 

instead of a tensorized grid of points. The classical sparse-grid approach applied to the 

construction of multi-variate basis function 𝐿𝑖(𝝃) can be expressed in the following way 

[157]: 

Lk(𝛏) = ∑ (−1)q+d−|h⃗⃗
 | (

d − 1

q + d − |h⃗ |
) 

q+1≤|h⃗⃗ |≤q+d
  

(l(ξ1
(i)
, h1)⨂  …⨂ l(ξd

(i)
, hd) )  

(6.16) 

where 

− q is a sparseness parameter or the sparseness level, and 

− h denotes the depth coordinate for each dimension: k =  1, … , d. 

The dependence of the total number of simulation points of the sparse grid products on 

the dimension is much weaker than in case of tensor product with the reduction from 



113 

𝑁𝑆𝐶 =  (𝑚𝑘)
𝑑 to approximately 𝑁𝑆𝐶−𝑆𝐺  =  

(2∗𝑚𝑘)
𝑑 

𝑑!
 simulation points. The sparse grid 

approximation is accurate for 𝑑 > 5. 

 

6.3 Sensitivity Analysis  

The definition of the sensitivity analysis is the one describing it as the study of how the 

uncertainty in the output of a mathematical model or system (numerical or otherwise) can 

be apportioned to different sources of uncertainty in its inputs [158]. The ideal approach 

would be to run both uncertainty quantification and SA in the same stochastic framework, 

usually UQ preceding the SA, thus minimizing the computational burden as much as 

possible. Two approaches of SA are described as part of this work, the so-called OAT and 

ANOVA. 

OAT approach is based on changing the input parameter one at a time while the others are 

kept at some nominal value. The sensitivity is estimated by monitoring the changes in the 

output which can be done in different ways, e.g. partial derivatives or linear regression. It 

the sensitivity is assessed by monitoring the change in the variance of the output after 

computing the variance for d univariate cases, then the impact factor of each input 

parameter is given by [140] 

Ii =
Vi(Y)

V(Y)
  

(6.17) 

where 

- 𝐗 = [X1, X2, … , Xk, … Xd] → Var(Y|𝐗) = V(Y) 

- 𝐗 = [Xi]                                → Var(Y|𝐗) = Var(Y|Xi) = Vi(Y) 

Although in this way any change observed in the output is unambiguously prescribed to 

the single variable changed, the approach does not fully explore the input space, since it 

does not take into account the simultaneous variation of input variables. The OAT 

approach cannot detect the presence of interactions between input variables. 

The ANOVA is based on variance decomposition within the probabilistic framework. The 

total variance of a model output is decomposed into terms depending on the input factors 

and their mutual interactions [158]: 

V(Y) = ∑ Vkk + ∑ ∑ Vkj +⋯+j>kk V12…d  (6.18) 

where 
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- V(Y) is the output variance when 𝐗 = [X1, X2, … , Xk, … Xd], 

- Vk = V(fk(Xk)) = VXk[EX~k(Y|Xk)], 

- Vij = V(fij(Xi, Xj)) 

Using the terms define above (6.18) becomes 

V (fij(Xi, Xj)) = VXiXj[EX~ij(Y|Xi, Xj)] − VXi[EX~i(Y|Xi)]

− −VXi[EX~j(Y|Xij)] 
(6.19) 

Normalizing the above expression by total variance V(Y) the sensitivity indices are obtained: 

1 = ∑ Skk + ∑ ∑ Skj +⋯+j>kk S12…d  (6.20) 

In SA, based on a variance decomposition, the variance of a model is decomposed into 

terms depending on the input factors and their mutual interactions, allows the computation 

of sensitivity indices of first and high order [25].  

The first order indices measure the effect of only the i-th random input variable, without any 

interaction with other RVs, is given by the following expression: 

Si =
Vxi[Ex~i

(Y|Xi)]

V(Y)
, i = 1,… , d  (6.21) 

where 

- Ex~i(Y|Xi) is the conditional expectation for the output temperature 

Namely, there are 𝑑 − 1 such expectations: the i-th input parameter is kept at its constant 

value while the expected temperature is computed for (𝑑 − 1)-dimensional stochastic 

model. Thee tilde sign “∼” stands for “all except”. After the computation of (𝑑 − 1) 

conditional expectations, their variance is computed, i.e., 𝑉𝑋𝑘(·). The 𝑉(𝐸) stands for the 

electric field variance in d-dimensional case (total variance). 

The second and high order sensitivity indices, 𝑆𝑖𝑗 and 𝑆12,…𝑑 give the information about 

the effect that the interaction of two, ore more random input variables has w.r.t. to the 

output. The computational burden may become very prohibitive when all groups of 

sensitivity indices needs to be computed, therefore, very often only first order sensitivity 

index is computed. In order to still obtain the information about the potential significant 

interactions between the variables, a total effect sensitivity index is defined as: 

STi =
Ex~i[Vxi

(Y|X~i)]

V(Y)
= 1 −

Vxi[Ex~i
(Y|X~i)]

V(Y)
  (6.22) 
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Thus, SA methodology is incorporated into the framework of SC method 

straightforwardly, without the need of additional simulations. 

 

6.4 Results in Stochastic-Deterministic Modelling 

 

6.4.1 Results for Single-layer tissue  

The approach in this thesis aims to incorporate the uncertainties in the tissue thermal 

parameters aiming to quantify the uncertainty in the output temperature. First, six RVs are 

considered in single-layer human body model (𝜆, 𝑊𝑏 , 𝑇𝑎, 𝑄𝑚, ℎ, 𝑇𝑎𝑖𝑟). The thermal 

parameters are modelled as RVs with uniform distribution in the range of ± 20% from 

their nominal values which are given in the Table 5.3.  

The tissue depth is considered to be 𝐿 =  0.29 𝑐𝑚. The full-tensor SCM results in 729 

deterministic simulations. The results for mean and variance of temperature distribution 

are compared to the results obtained in [25]. Fig. 6.2 and Fig. 6.3 show the mean and the 

standard deviation of steady-state temperature obtained in single layer model. 

 

 

Figure 6.2 The mean of the temperature distribution for 𝜆 = 0.49, 𝑊𝑏 = 2100, 

𝑇𝑎 = 37, 𝑄𝑚 = 300, ℎ = 7, and 𝑇𝑎𝑖𝑟 = 25 
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Figure 6.3 The standard deviation of the temperature distribution for 𝜆 = 0.49, 

𝑊𝑏 = 2100, 𝑇𝑎 = 37, 𝑄𝑚 = 300, ℎ = 7, and 𝑇𝑎𝑖𝑟 = 25 

As mentioned earlier significantly higher values of mean temperature obtained in [25] are 

related to the significantly higher nominal value of metabolic heat (𝑄𝑚 =

33800  𝑊 𝑚3⁄ ). Higher values of metabolic heat generation (Qm) elevates the inner 

tissue temperature magnitudes but maintains an almost constant slope in the temperature 

flow path to the boundary regardless the metabolic rate. 

The crude estimation of the confidence intervals (CI) given as the mean value ± 1 standard 

deviation is shown in Fig. 6.4 (pink and green our single layer models).  

 

Figure 6.4 The confidence interval (CI) given as the mean temperature ∓ standard 

deviation of the temperature for 𝜆 = 0.49, 𝑊𝑏 = 2100, 𝑇𝑎 = 37, 𝑄𝑚 = 300, ℎ = 7, 

and 𝑇𝑎𝑖𝑟 = 25 
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The maximal deviation is 15 % from the mean value. Since input parameter variation is 

20 %, as in [25], and CI is wider, our model should be used for smaller input parameter 

variation.  

The influence of the variation in the input variables on the output temperature distribution 

is computed by using earlier mentioned Sobol indices. The first and total order sensitivity 

indices are shown in Fig. 6.5. The first order sensitivity indices give the information about 

the impact of certain input parameter while all possible interactions of a certain parameters 

with other parameters are included in the total effect indices. 

 

 

Figure 6.5 The sensitivity indices of first (solid line) and total order (star marker) 

for each random input parameter 

The results presented in Fig. 6.5 demonstrate the overwhelming impact of arterial 

temperature over the whole domain, and confirmed the results presented in [25]. The 

average temperature and the maximum temperature are mostly affected by the variation 

of the arterial blood temperature. Considering its overall influence, this thermal parameter 

has the major effect on temperature distribution. Other thermal parameters exhibit small 

impact, as stated in [25]. The influence of arterial blood temperature has homogenous 

trend. Other parameters exhibit nonhomogeneous influence. The values of total and first 

order indices are almost the same for each parameter (except for thermal conductivity near 

tissue surface), thus proving that none of the mutual interactions has a significant impact 

on the temperature distribution.  
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6.4.2 Results for 3-layer tissue model  

As stated earlier, there is considerable variation in the individual depth-temperature 

distributions [96]. Variation of output temperature distribution may be the result of 

possible differences in individual size and age (morphology), or the general variability of 

permittivity and conductivity, due to difference in age or sex [149]. Earlier dielectric 

measurements of skin conducted in vivo reported that the considerable variability of the 

measured data with the body site can be attributed to the variability in skin layer thickness 

[159]. The results in [6] also reveal that the skin surface temperature elevation may be 

correlated with the blood perfusion rates in the deeper layers as well as the thickness of 

the skin tissues.  

The special contribution of this study is analysis of the effects of thermal conductivity and 

tissue thickness in our 3-layer models on resulting temperature in steady-state. Thermal 

conductivity and tissue thickness are modeled as RVs with uniform probability 

distribution (Table 6.1). The mean values used in this paper are taken from [102], with 

muscle depth being smaller because of limitation of penetration depth. 

 

Table 6.1 Parameters modeled as input RVs 

Thermal 

parameter 

𝑑𝑠𝑘𝑖𝑛  

[𝑚𝑚] 

𝑑𝑆𝐴𝑇  

[𝑚𝑚] 

𝑑𝑚𝑢𝑠𝑐𝑙𝑒  

[𝑚𝑚] 

𝜆𝑠𝑘𝑖𝑛 

[𝑊 𝑚℃⁄ ] 

𝜆𝑆𝐴𝑇  

[𝑊 𝑚℃⁄ ] 

𝜆𝑚𝑢𝑠𝑐𝑙𝑒  

[𝑊 𝑚℃⁄ ] 

Initial value 1
 

2
 

2
6
 

0
.4

2
 

0
.2

5
 

0
.5

0
 

Distribution 

of RV U 

[min, max] 𝑈
 [
0
.8
,1
.2
] 

𝑈
 [
1
.6
+
2
.4
] 

U
 [

2
0

.8
, 

3
1
.2

] 

U
 [

0
.3

3
6

,0
.5

0
4
] 

U
 [

0
.2

,0
.3

] 

U
 [

0
.4

,0
.6

] 

 

The full-tensor SCM resulted in 729 deterministic simulations for 3 collocation points, 

15625 deterministic simulations for 5 collocation points, and 117649 for 7 collation 

points. The results for the mean, variance, and standard deviation of temperature 

distribution are shown in Fig. 6.6, Fig. 6.7, and Fig. 6.8.  
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Figure 6.6 The mean of the temperature distribution for 𝜆𝑠𝑘𝑖𝑛 = 0.42, 𝜆𝐹𝐴𝑇 = 0.25, 

𝜆𝑚𝑢𝑠𝑐𝑙𝑒 = 0.50, 𝑑𝑠𝑘𝑖𝑛 = 1, 𝑑𝐹𝐴𝑇 = 2, 𝑎𝑛𝑑 𝑑𝑚𝑢𝑠𝑐𝑙𝑒 = 26 

 

 

Figure 6.7 The variance deviation of the temperature distribution for 𝜆𝑠𝑘𝑖𝑛 = 0.42, 

𝜆𝐹𝐴𝑇 = 0.25, 𝜆𝑚𝑢𝑠𝑐𝑙𝑒 = 0.50, 𝑑𝑠𝑘𝑖𝑛 = 1, 𝑑𝐹𝐴𝑇 = 2, 𝑎𝑛𝑑 𝑑𝑚𝑢𝑠𝑐𝑙𝑒 = 26 
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Figure 6.8 The standard deviation of the temperature distribution for 𝜆𝑠𝑘𝑖𝑛 = 0.42, 

𝜆𝐹𝐴𝑇 = 0.25, 𝜆𝑚𝑢𝑠𝑐𝑙𝑒 = 0.50, 𝑑𝑠𝑘𝑖𝑛 = 1, 𝑑𝐹𝐴𝑇 = 2, 𝑎𝑛𝑑 𝑑𝑚𝑢𝑠𝑐𝑙𝑒 = 26 

The obtained results for mean, variance, and standard deviation of temperature 

distribution show good convergence. Furthermore 20% variation of input RVs results in 

less than 10 % change of output temperature distribution. 

The crude estimation of the confidence intervals (CI) given as the mean value ± 2 standard 

deviation or mean value ± 3 standard deviation are shown in Fig. 6.9 and Fig. 6.10. It is 

useful to mention that the confidence interval is most often shown as two or three standard 

deviations. Namely, double standard deviation means a precision of 95.5 %, and triple 

standard deviation means a precision of 99,7 % [160]. 

 

Figure 6.9 The confidence interval (CI) given as the mean temperature ∓2 standard 

deviation of the temperature for 𝜆𝑠𝑘𝑖𝑛 = 0.42, 𝜆𝐹𝐴𝑇 = 0.25, 𝜆𝑚𝑢𝑠𝑐𝑙𝑒 = 0.50, 

𝑑𝑠𝑘𝑖𝑛 = 1, 𝑑𝐹𝐴𝑇 = 2, 𝑎𝑛𝑑 𝑑𝑚𝑢𝑠𝑐𝑙𝑒 = 26 
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Figure 6.10 The confidence interval (CI) given as the mean temperature ∓3 

standard deviation of the temperature for 𝜆𝑠𝑘𝑖𝑛 = 0.42, 𝜆𝐹𝐴𝑇 = 0.25, 𝜆𝑚𝑢𝑠𝑐𝑙𝑒 =

0.50, 𝑑𝑠𝑘𝑖𝑛 = 1, 𝑑𝐹𝐴𝑇 = 2, 𝑎𝑛𝑑 𝑑𝑚𝑢𝑠𝑐𝑙𝑒 = 26 

The influence of the variation in the input variables on the output temperature distribution 

is computed by using OAT and Sobol indices. The variance of the temperature in the 3-

layer tissue is calculated for six univariate cases by using 3, 5, 9, and 17 collocation points 

obtained from Gauss-Legendre quadrature rule. The standard deviation is calculated as 

the square root of the variance.  

Fig. 6.11 to Fig. 6.16 contain the information about the convergence of SC methods in 

computation of temperature standard deviation and OAT sensitivity analysis for 6 

univariate cases, i.e., when only one input parameter is random at a time (skin depth, SAT 

depth, muscle depth, skin thermal conductivity, SAT thermal conductivity, muscle 

thermal conductivity). 

 

 



122 

 

Figure 6.11 Convergence of SC methods in computation of standard deviation of 

temperature when only skin depth is RV at a time for 𝜆𝑠𝑘𝑖𝑛 = 0.42, 𝜆𝐹𝐴𝑇 = 0.25, 

𝜆𝑚𝑢𝑠𝑐𝑙𝑒 = 0.50, 𝑑𝑠𝑘𝑖𝑛 = 1, 𝑑𝐹𝐴𝑇 = 2, 𝑎𝑛𝑑 𝑑𝑚𝑢𝑠𝑐𝑙𝑒 = 26 

 

 

Figure 6.12 Convergence of SC methods in computation of standard deviation of 

temperature when only SAT depth is RV at a time for 𝜆𝑠𝑘𝑖𝑛 = 0.42, 𝜆𝐹𝐴𝑇 = 0.25, 

𝜆𝑚𝑢𝑠𝑐𝑙𝑒 = 0.50, 𝑑𝑠𝑘𝑖𝑛 = 1, 𝑑𝐹𝐴𝑇 = 2, 𝑎𝑛𝑑 𝑑𝑚𝑢𝑠𝑐𝑙𝑒 = 26 
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Figure 6.13 Convergence of SC methods in computation of standard deviation of 

temperature when only muscle depth is RV at a time for 𝜆𝑠𝑘𝑖𝑛 = 0.42, 𝜆𝐹𝐴𝑇 = 0.25, 

𝜆𝑚𝑢𝑠𝑐𝑙𝑒 = 0.50, 𝑑𝑠𝑘𝑖𝑛 = 1, 𝑑𝐹𝐴𝑇 = 2, 𝑎𝑛𝑑 𝑑𝑚𝑢𝑠𝑐𝑙𝑒 = 26 

 

 

Figure 6.14 Convergence of SC methods in computation of standard deviation of 

temperature when only skin thermal conductivity is RV at a time for 𝜆𝑠𝑘𝑖𝑛 = 0.42, 

𝜆𝐹𝐴𝑇 = 0.25, 𝜆𝑚𝑢𝑠𝑐𝑙𝑒 = 0.50, 𝑑𝑠𝑘𝑖𝑛 = 1, 𝑑𝐹𝐴𝑇 = 2, 𝑎𝑛𝑑 𝑑𝑚𝑢𝑠𝑐𝑙𝑒 = 26 
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Figure 6.15 Convergence of SC methods in computation of standard deviation of 

temperature when only SAT thermal conductivity is RV at a time for 𝜆𝑠𝑘𝑖𝑛 = 0.42, 

𝜆𝐹𝐴𝑇 = 0.25, 𝜆𝑚𝑢𝑠𝑐𝑙𝑒 = 0.50, 𝑑𝑠𝑘𝑖𝑛 = 1, 𝑑𝐹𝐴𝑇 = 2, 𝑎𝑛𝑑 𝑑𝑚𝑢𝑠𝑐𝑙𝑒 = 26 

 

 

Figure 6.16 Convergence of SC methods in computation of standard deviation of 

temperature when only muscle thermal conductivity is RV at a time for 𝜆𝑠𝑘𝑖𝑛 = 0.42, 

𝜆𝐹𝐴𝑇 = 0.25, 𝜆𝑚𝑢𝑠𝑐𝑙𝑒 = 0.50, 𝑑𝑠𝑘𝑖𝑛 = 1, 𝑑𝐹𝐴𝑇 = 2, 𝑎𝑛𝑑 𝑑𝑚𝑢𝑠𝑐𝑙𝑒 = 26 

SC method exhibits problems with convergence when computing the standard deviation 

of the temperature. Convergence is not accomplished for chosen number of collocation 

points when only skin depth is RV and when muscle depth is RV. To improve the 

convergence, number of collocation points should be further increased. Based on Fig. 6.11 

to Fig. 16 the variation of these input parameters do not have any effect on the 

convergence of the total standard deviation, i.e., the standard deviation of 6-dimensional 
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stochastic model. Beforementioned points the problem toward ANOVA analysis. The first 

and total order sensitivity indices are shown in Fig. 6.17. 

 

 

Figure 6.17 The sensitivity indices of first (solid line) and total order (circle marker) 

for each random input parameter 

In 3-layer human body model composed of skin, fat and muscle, the variance of 

temperature is mostly affected by the variation of the skin thermal conductivity. 

Considering its overall influence, this thermal parameter has the major effect on 

temperature distribution. In skin and fat tissues other parameter exhibit small influence. 

Furthermore, the thermal conductivity of muscle has significant influence on temperature 

distribution in muscle tissue. The influence of the remaining parameters is negligible. 

These parameters, along with arterial blood temperature mostly describe the heat 

exchange between the human body (single-layer and 3-layer) and the environment.  

The values of total and first order indices are almost the same for each parameter (except 

for thermal conductivity near tissue surface), thus proving that none of the mutual 

interactions has a significant impact on the temperature distribution.  

Based on UQ in thermal dosimetry with a 95 % level of precision the largest variability 

in output temperature does not exceed 130% of its expectation in 3-layer tissue. However, 

if the level of precision is increased to 99.7% variability in output temperature does not 

exceed 180% of expected value in 3-layer tissue. Furthermore, sensitivity analysis reveals 

that one input parameter (skin thermal conductivity) bears significant impact on the output 

CI width while other five parameters can be neglected.  
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6.5 Chapter Summary  

Presented approach provides an insight into the behaviour of the model output with respect 

to input parameters variation. The analysis of the influence of thermal parameters on 

temperature distribution is given in this chapter. The existing thermal models are 

combined with the state of the art SC. Sensitivity analysis of the individual thermal 

parameters confirmed previous findings: arterial blood temperature has the most 

significant influence on general steady-state temperature distribution.  

SC method exhibits problems with convergence when computing the standard deviation 

of the temperature. Convergence is not accomplished for chosen number of collocation 

points when only skin depth is RV and when muscle depth is RV. To improve the 

convergence, number of collocation points should be further increased. The variation of 

these input parameters do not have any effect on the convergence of the total standard 

deviation, i.e., the standard deviation of 6-dimensional stochastic model. 

Beforementioned points the problem toward ANOVA analysis. The values of total and 

first order indices are almost the same for each parameter (except for thermal conductivity 

near tissue surface), thus proving that none of the mutual interactions has a significant 

impact on the temperature distribution.  

Based on UQ in thermal dosimetry with a 95 % level of precision the largest variability 

in output temperature does not exceed 130% of its expectation in 3-layer tissue. However, 

if the level of precision is increased to 99.7% variability in output temperature does not 

exceed 180% of expected value in 3-layer tissue. Furthermore, sensitivity analysis reveals 

that one input parameter (skin thermal conductivity) bears significant impact on the output 

CI width while other five parameters can be neglected. Considering the fact that in vivo 

measurements are impossible, and that the models overestimate temperature elevation, 

they can be used for quick and efficient assessments of the phenomenon. 

The important contribution of our study is the analysis of the influence of thermal tissue 

depth and thermal tissue conductivity on temperature distribution is 3-layer human body 

models. The variance of temperature is mostly affected by the variation of the skin thermal 

conductivity. Considering its overall influence, this thermal parameter has the major effect 

on temperature distribution. In skin and fat tissues other parameter exhibit small influence. 

Furthermore, the thermal conductivity of muscle has significant influence on temperature 

distribution in muscle tissue. The influence of the remaining parameters is negligible. 

These parameters, along with arterial blood temperature describe the heat exchange 

between the human body (single-layer and three layer) and the environment. 
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CHAPTER 7 

Concluding Remarks 

 

A simplified analytical deterministic-stochastic model for rapid assessment of thermal 

response of the human body due to exposure to external fields is developed in this thesis. 

The model consists of a vertical electric dipole (VED) placed at a height h above the real 

ground and a human body modelled in the form of a parallelepiped or cylinder. Plane 

wave exposure is assumed, and complete dosimetric procedure includes 3 steps: incident 

field dosimetry, internal field dosimetry and thermal dosimetry.  

Within the incident field dosimetry, the electric field irradiated by finite-length dipole 

antenna at any point of the upper half-space is obtained, using a rigorous numerical 

approach, an approximate numerical approach with an assumed current distribution, and 

an analytical approach. Three approaches give similar results when the vertical dipole 

antenna is electrically short (𝐿 ≤
λ

10
) and when the ratio of the height of the antenna above 

the ground and wavelength satisfies ℎ ≥ 10λ. Furthermore, when the distance in the 

horizontal direction is above 60 m these three models agree satisfactorily. The results 

obtained using a rigorous numerical approach, an approximate numerical approach with 

an assumed current distribution are also valid in the near field, and  analytical solution is 

based on the far-field approximation.  

Approximate approaches with assumed current distribution saves time and computer 

resources as it avoids the solving of the Pocklington equation, and in the case of the 

analytical approach the field integral. 

Furthermore, an efficient deterministic model for internal field dosimetry, based on 

calculation of SARWB in a parallelepiped or cylindrical human body model is proposed. 

The difference between the SARWB obtained in parallelepiped and cylindrical human body 

models in the x horizontal direction is less than 10 % at 80 m away from source VED 

antenna.  

The developed model provides the implementation of internal dosimetry without the use 

of very demanding realistic, anatomically based, models of the human body. Bearing in 

mind that the electric field and SAR values obtained by means of analytical approach are 

higher than the ones corresponding to the results obtained via more rigorous numerical 

modeling it can be concluded that such an overestimation is acceptable for the health risk 

assessment. Namely, if the overestimated values do not exceed exposure limits it is 

ensured that the values stemming from realistic scenarios from either computation or 
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measurement will stay within the proposed limits. A parallelepiped human body model 

can further simplify the internal dosimetry and consequently save computational cost, 

specifically if thermal dosimetry is of interest. 

Within the framework of the thesis, a new stochastic-deterministic model for thermal 

dosimetry based on a multi-layer planar representation of the human body is developed. 

The deterministic part is based on a simplified one-dimensional single-layer and 3-layer 

Pennes’ Bio-Heat transfer Equotion (PBHE) in biological tissues. The SAR determined 

in the previous step in the parallelepiped human body model is used as the input EM 

quantity, i.e. as heat surface density. To solve the PBHE analytically, power density from 

external heat source related to the absorbed EM energy irradiated from VED antenna, is 

assumed to either be constant, or exponentially decreasing with the tissue depth.  

Proposed models describe tissue temperature under the condition of maximum SAR on 

the surface of the human body, so they give the upper limit of the temperature change in 

stationary conditions. The obtained solution gives overestimation of steady-state 

temperature due to EM radiation compared to other analytical methods. The obtained 

solution is also compared to other analytical methods presented in analysed literature, but 

the large number of parameters in the PBHE, makes the comparation challenging. This 

highlights the importance of parametric analysis in thermal dosimetry.  

The impossibility of in-vivo measurement of thermal parameters is the cause of 

uncertainties in the set of input parameters. In the framework of stochastic modelling of 

the thermal response of the human body, the influence of uncertainty in the set of input 

parameters on the resulting temperature elevation in steady-state, in terms of the output 

quantity of interest, is quantified using the stochastic collocation method. The input 

random variables are thermal conductivity and tissue thickness of each layer (skin, fat, 

muscle), and the confidence interval of the temperature elevation is obtained, which 

extends the usability of the deterministic model. Finally, in the stochastic part of the 

thermal dosimetry, a sensitivity analysis is performed, thus providing the assessment of 

the influence of each of the input parameters and their mutual influence on the output 

value of interest. 

UQ results in thermal dosimetry show that the largest variability in output temperature 

does not exceed 130% of its expectation in 3-layer tissue (95 % level of precision). 

However, if the level of precision is increased to 99.7% variability in output temperature 

does not exceed 180% of expected value in 3-layer tissue. Furthermore, SA analysis 

reveals that skin thermal conductivity bears significant impact on the output CI width 

while other five parameters can be neglected.  

The application of analytical procedures provides fast and complete dosimetry for realistic 

scenarios in terms of exposure to high frequency radiation from specific antenna systems. 

By applying stochastic modelling of the body's thermal response, it is possible to estimate 
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the uncertainty of temperature rise due to the uncertainty of input parameters (thermal 

conductivity, thickness of tissue layers) that cannot be determined by in vivo 

measurement. 
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APPENDIX A 

Whole-body averaged SAR for cylindrical body model: 

𝑆𝐴𝑅𝑊𝐵 =
1

𝑉
∫ 𝑆𝐴𝑅𝑑𝑉
 

𝑉
  (A.1) 

where 

𝑆𝐴𝑅𝑊𝐵 =
𝜎k2

4𝜌𝐿𝑎4𝜋3(𝜎2+𝜔2𝜀2)

1

|𝐽1(𝑗−1/2𝑘𝑎)|
2 ∫ |𝐽0(𝑗

−1/2𝑘𝜁|
2
𝑑𝜁 ∫ |𝐼𝑧(𝑧)|

2𝑑𝑧  
𝐿

0

𝑎

0
  (A.2) 

𝜎k2

4𝜌𝐿𝑎4𝜋3(𝜎2+𝜔2𝜀2)

1

|𝐽1(𝑗−1/2𝑘𝑎)|
2 = 𝐶  (A.3) 

∫ |𝐽0(𝑗
−1/2𝑘𝜁|

2
𝑑𝜁 = 𝐼1

𝑎

0
  (A.4) 

∫ |𝐼𝑧(𝑧)|
2𝑑𝑧  

𝐿

0
= 𝐼2  (A.5) 

𝑆𝐴𝑅𝑊𝐵 = C𝐼1𝐼2  (A.6) 

Since current distribution in cylindrical human body model depends of Bessel function, 

axial current should have a form similar to (7), where: 

𝐼(𝑧) = 𝐶1𝑐𝑜𝑠𝛾𝑧 + 𝐶2𝑠𝑖𝑛𝛾𝑧  (A.7) 

𝛾2 = 𝑘2(1 −
𝑗4𝜋𝑍𝑐(𝜁) 

𝑘𝑍𝑐Ψ𝑑𝑅
) (A.8) 

where k is the free space wave number, 𝑍𝑐=120𝜋 is the free space impedance and 𝑍𝑐(𝜁) 

is the HF region, the impedance per unit length is given by 

𝑘 = ω√𝜇0𝜀0  (A.9) 

𝑍𝑐(𝜁) =
𝑘

2a𝜋𝜎

𝐽0(𝑗
−1/2𝑘𝜁)

𝐽1(𝑗−1/2𝑘𝑎)
  (A.10) 

Ψ𝑑𝑅 = 𝑐𝑠𝑐𝛾(ℎ − |𝑧|) ∫ 𝑠𝑖𝑛𝛾(ℎ − |𝑧′|)
ℎ

−ℎ
[
𝑐𝑜𝑠𝑘𝑅

𝑅
−
𝑐𝑜𝑠𝑘𝑅ℎ

𝑅ℎ
]𝑑𝑧′  (A.11) 
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Appendix B 

Heat conduction through a medium is described by Fourier law:  

𝑞 = −𝜆∇𝑇  (B.1) 

The heat through surface element dS in differential dt is: 

Q = ∫∫𝑞 𝑑𝑆 𝑑𝑡
 

𝑆

 

𝑡

−∫∫𝜆∇𝑇𝑑𝑆 𝑑𝑡
 

𝑆

 

𝑡

 (B.2) 

Now, Gauss divergence theorem yields 

Q = −∫∫𝜆∇𝑇𝑑𝑆 𝑑𝑡
 

𝑆

= −

 

𝑡

∫∫∇ ∙ (𝜆∇𝑇)𝑑V𝑑𝑡
 

𝑆

 

𝑡

 (B.3) 

The differential of total heat delivered into a volume V, due to internal and external heat 

sources in time differential dt, is given by 

𝑑𝑄𝑡𝑜𝑡 = 𝑑𝑄𝑖𝑛𝑡 + 𝑑𝑄𝑒𝑥𝑡  (B.4) 

where the differential of internal and external heat sources are as follows 

𝑑𝑄𝑖𝑛𝑡 = 𝑄𝑖𝑑𝑉𝑑𝑡  (B.5) 

𝑑𝑄𝑒𝑥𝑡 = ∇ ∙ (𝜆∇𝑇)𝑑V𝑑𝑡  (B.6) 

Now, returning (5) and (6) in (4) and combining previous equations 

𝜌𝐶
𝜕𝑇

𝜕𝑡
𝑑𝑉𝑑𝑡 = 𝑄𝑖𝑑𝑉𝑑𝑡 + ∇ ∙ (𝜆∇𝑇)𝑑V𝑑𝑡 

(B.7) 

Taking spatial and temporal integration yields 

𝜌𝐶 ∫∫
𝜕𝑇

𝜕𝑡
𝑑V𝑑𝑡

 

𝑆

 

𝑡

= ∫∫𝑄𝑖𝑑V𝑑𝑡
 

𝑆

 

𝑡

+∫∫∇ ∙ (𝜆∇𝑇)𝑑V𝑑𝑡
 

𝑆

 

𝑡

  (B.8) 

Rearranging the integral expression Fourier heat conduction equation is obtained 

𝜌𝐶
𝜕𝑇

𝜕𝑡
= 𝑄𝑖 + ∇ ∙ (𝜆∇𝑇)  

(B.9) 

For source-free areas Fourier heat conduction equation becomes Laplace equation. 

In an external forced flow, the rate of heat transfer is approximately proportional to the 

difference between the surface temperature 𝑇𝑠, and the temperature of the free stream fluid 

𝑇𝑒. Therefore, the heat flux density q can be expressed as 

q𝑠 = −𝜆
𝜕𝑇

𝜕𝑛
= ℎ𝑐(𝑇𝑠 − 𝑇𝑎)  (B.10) 
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Volume blood perfusion of tissue 𝑄𝑏 can be expressed as 

𝑄𝑏 = 𝑊𝑏𝐶𝑝𝑏(𝑇𝑎 − 𝑇 )  (B.11) 

Finally, the space-time bioheat transfer equation can be written in the form 

∇ ∙ (𝜆∇𝑇) +𝑊𝑏𝐶𝑝𝑏(𝑇𝑎 − 𝑇 ) + 𝑄𝑚 + 𝑄𝑒𝑥𝑡 = 𝜌𝐶
𝜕𝑇

𝜕𝑡
  (B.12) 
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APPENDIX C 

For single-layer geometry and model 𝑀1, according to (1), (2) results in (3) 

−𝜆1
𝜕𝑇𝑖
𝜕𝑥
(𝑥1
 = 0) = ℎ(𝑇𝑖(𝑥1

 = 0) − 𝑇𝑎𝑖𝑟) (C.1) 
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(C.2) 

(
ℎ

𝜆
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ℎ

𝜆
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Using (4), we obtained (5) 

𝑇3(𝑥4
 = 𝑑3

 = 𝐿1) = 𝑇𝑎 (C.4) 

𝐴 = −𝐵 𝑒
2√
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  (C.5) 

After minor mathematical manipulation, the value of constant B is obtained. With known 

B, (5) is used to calculate A. 
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𝐵 =
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APPENDIX D 

For single-layer geometry and model 𝑀2, according to (1), (2) results in (3) 
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) 𝑒−2𝑥 +

𝑄𝑚

ℎ𝑏
+ 𝑇𝑎(𝑥 

 = 0) − 𝑇𝑎𝑖𝑟)  

(D.2) 

−√
ℎ𝑏

𝜆 
(𝐴 − 𝐵) + 2 (

𝜌𝑆𝐴𝑅𝑚𝑎𝑥

4𝜆−ℎ𝑏
) = −

ℎ

𝜆
(𝐴 + 𝐵 − (

𝜌𝑆𝐴𝑅𝑚𝑎𝑥

4𝜆−ℎ𝑏
) +

𝑄𝑚

ℎ𝑏
+ 𝑇𝑎 − 𝑇𝑎𝑖𝑟)  (D.3) 

Using (4), we obtained (5) 

𝑇3(𝑥4
 = 𝑑3

 = 𝐿1) = 𝑇𝑎 (D.4) 

𝐴 = −
(
ℎ

𝜆
+√

ℎ𝑏
𝜆 
)

(
ℎ

𝜆
−√

ℎ𝑏
𝜆 
)

𝐵 −
ℎ

𝜆(
ℎ

𝜆
−√

ℎ𝑏
𝜆 
)

(−
𝜌𝑆𝐴𝑅𝑚𝑎𝑥

4𝜆−ℎ𝑏
+
𝑄𝑚

ℎ𝑏
+ 𝑇𝑎 − 𝑇𝑎𝑖𝑟) − 2 (

𝜌𝑆𝐴𝑅𝑚𝑎𝑥

4𝜆−ℎ𝑏
)  (D.5) 

After minor mathematical manipulation, the value of constant B is obtained. With known 

B, (5) is used to calculate A. 

𝐴 = −

−
ℎ

𝜆
(−𝑠2  +

𝑄𝑚
ℎ𝑏
+𝑇𝑎−𝑇𝑎𝑖𝑟)−2𝑠2  −𝑠4  

{
 
 

 
 

𝑠2  𝑒
−2𝐿1𝑒

√
ℎ𝑏
𝜆 
𝐿1
−
𝑄𝑚
ℎ𝑏
𝑒
√
ℎ𝑏
𝜆 
𝐿1

}
 
 

 
 

{
 
 

 
 

𝑠3  −𝑠4  𝑒
2√
ℎ𝑏
𝜆 
𝐿1

}
 
 

 
 

 

𝑒
2√

ℎ𝑏
𝜆 
𝐿1
+

𝑠2  𝑒
−2𝐿1𝑒

√
ℎ𝑏
𝜆 
𝐿1
−
𝑄𝑚

ℎ𝑏
𝑒
√
ℎ𝑏
𝜆 
𝐿1

  

(D.6) 

𝐵

=

−
ℎ
𝜆
(−𝑠2  +

𝑄𝑚
ℎ𝑏
+ 𝑇𝑎 − 𝑇𝑎𝑖𝑟) − 2𝑠2  − 𝑠4  {𝑠2  𝑒

−2𝐿1𝑒
√
ℎ𝑏
𝜆 
𝐿1
−
𝑄𝑚
ℎ𝑏
𝑒
√
ℎ𝑏
𝜆 
𝐿1
}

{𝑠3  − 𝑠4  𝑒
2√
ℎ𝑏
𝜆 
𝐿1
}

 
(D.7) 
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𝑠1 =
𝜌𝑆𝐴𝑅𝑚𝑎𝑥 + 𝑄𝑚

ℎ𝑏
, 𝑠2 =

𝜌 𝑆𝐴𝑅𝑚𝑎𝑥
(4𝜆1 − ℎ𝑏1)

, 𝑠3 = (√
ℎ𝑏
𝜆
+
ℎ

𝜆
) ,  𝑠4

= (
ℎ

𝜆
− √

ℎ𝑏
𝜆
) 

(D.8) 
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APPENDIX E 

For 3-layer geometry and model 𝑀1, starting from (1), the relationship between 𝐴3 and 

𝐵3 is obtained 

𝑇3(𝑥3
 = 𝑑3

 = 𝐿1) = 𝑇𝑎  (E.1) 

𝐴3 = −𝐵3 𝑒
2𝑙31 − 𝑠3𝑒

𝑙31   (E.2) 

On the boundary fat-muscle: 

𝐴2 𝑒
−√

ℎ𝑏2
𝜆2
𝑑2
+ 𝐵2 𝑒

√
ℎ𝑏2
𝜆2
𝑑2
= 𝐴3𝑒

−√
ℎ𝑏3
𝜆3
𝑑2
+ 𝐵3 𝑒

√
ℎ𝑏3
𝜆3
𝑑2
+
𝜌3𝑆𝐴𝑅𝑚𝑎𝑥3+𝑄𝑚3

ℎ𝑏3
−

𝜌2𝑆𝐴𝑅𝑚𝑎𝑥2+𝑄𝑚2

ℎ𝑏2
  

(E.3) 

−𝐴2 𝑒
−√

ℎ𝑏2
𝜆2
𝑑2
+ 𝐵2 𝑒

√
ℎ𝑏2
𝜆2
𝑑2
= −𝐴3√

𝜆2ℎ𝑏3

𝜆3ℎ𝑏2
𝑒
−√

ℎ𝑏3
𝜆3
𝑑2
+√

𝜆2ℎ𝑏3

𝜆3ℎ𝑏2
𝐵3 𝑒

√
ℎ𝑏3
𝜆3
𝑑2

  

(E.4) 

 

On the boundary skin-fat: 

𝐴1𝑒
−√

ℎ𝑏1
𝜆1
𝑑1
+ 𝐵1𝑒

√
ℎ𝑏1
𝜆1
𝑑1
= 𝐴2 𝑒

−√
ℎ𝑏2
𝜆2
𝑑1
+ 𝐵2 𝑒

√
ℎ𝑏2
𝜆2
𝑑1
+ {  

𝜌2𝑆𝐴𝑅𝑚𝑎𝑥2+𝑄𝑚2

ℎ𝑏2
−

 
𝜌1𝑆𝐴𝑅𝑚𝑎𝑥1+𝑄𝑚1

ℎ𝑏1
}  

(E.5) 

−𝐴1 𝑒
−√

ℎ𝑏1
𝜆1
𝑑1
+ 𝐵1 𝑒

√
ℎ𝑏1
𝜆1
𝑑1
= −𝐴1√

𝜆1ℎ𝑏2
𝜆2ℎ𝑏1

𝑒
−√

ℎ𝑏2
𝜆2
𝑑1
+ 𝐵3√

𝜆1ℎ𝑏2
𝜆2ℎ𝑏1

 𝑒
√
ℎ𝑏3
𝜆3
𝑑2

 
(E.6) 

On air-skin interface 

𝐴1 =
√𝜆1ℎ𝑏1+ℎ

√𝜆1ℎ𝑏1−ℎ
𝐵1 +

ℎ

√𝜆1ℎ𝑏1−ℎ
( 𝑠1 + 𝑇𝑎 − 𝑇𝑎𝑖𝑟)  (E.7) 

𝐴1 = 𝑐1𝐵1 + 𝑐2( 𝑠1 + 𝑇𝑎 − 𝑇𝑎𝑖𝑟) (E.8) 

Adding and subtracting (3) and (4) will yield to equations (9) and (10) in which 𝐴2 and 

𝐵2 are expressed through 𝐴3 and 𝐵3 

𝐴2 = 0.5𝑒
√
ℎ𝑏2
𝜆2
𝑑2
[(1 + √

𝜆2ℎ𝑏3

𝜆3ℎ𝑏2

 

)
 

𝑒
−√

ℎ𝑏3
𝜆3
𝑑2
𝐴3 + 𝐵3 (1 − √

𝜆2ℎ𝑏3

𝜆3ℎ𝑏2

 

) 𝑒
√
ℎ𝑏3
𝜆3
𝑑2
+

{ 
𝜌3𝑆𝐴𝑅𝑚𝑎𝑥3+𝑄𝑚3

ℎ𝑏3
−
𝜌2𝑆𝐴𝑅𝑚𝑎𝑥2+𝑄𝑚2

ℎ𝑏2
}]  

(E.9) 
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𝐵2  = 0.5𝑒
−√

ℎ𝑏2
𝜆2
𝑑2
[𝐴3 (1 − √

𝜆2ℎ𝑏3

𝜆3ℎ𝑏2

 

) 𝑒
−√

ℎ𝑏3
𝜆3
𝑑2
+ 𝐵3 (1 + √

𝜆2ℎ𝑏3

𝜆3ℎ𝑏2

 

) 𝑒
√
ℎ𝑏3
𝜆3
𝑑2
 +

{ 
𝜌3𝑆𝐴𝑅𝑚𝑎𝑥3+𝑄𝑚3

ℎ𝑏3
−
𝜌2𝑆𝐴𝑅𝑚𝑎𝑥2+𝑄𝑚2

ℎ𝑏2
}]  

(E.10) 

Inserting (2) in (9) and (10), (11) and (12) are obtained. (11) and (12) can be written as 

(13) and (14) 

𝐴2 = 0.5𝑒
√
ℎ𝑏2
𝜆2
𝑑2
{[(1 − √

𝜆2ℎ𝑏3

𝜆3ℎ𝑏2

 

) 𝑒
√
ℎ𝑏3
𝜆3
𝑑2
− 𝑒2𝑙31 (1 +

√
𝜆2ℎ𝑏3

𝜆3ℎ𝑏2

 

)
 

𝑒
−√

ℎ𝑏3
𝜆3
𝑑2
] 𝐵3 − 𝑠3 (1 + √

𝜆2ℎ𝑏3

𝜆3ℎ𝑏2

 

) 𝑒
−√

ℎ𝑏3
𝜆3
𝑑2
𝑒𝑙31

 

+
𝜌3𝑆𝐴𝑅𝑚𝑎𝑥3+𝑄𝑚3

ℎ𝑏3
−

𝜌2𝑆𝐴𝑅𝑚𝑎𝑥2+𝑄𝑚2

ℎ𝑏2
}  

(E.11) 

𝐵2  = 0.5𝑒
−√

ℎ𝑏2
𝜆2
𝑑2
{[(1 + √

𝜆2ℎ𝑏3

𝜆3ℎ𝑏2

 

) 𝑒
√
ℎ𝑏3
𝜆3
𝑑2
− (1 −

√
𝜆2ℎ𝑏3

𝜆3ℎ𝑏2

 

) 𝑒
−√

ℎ𝑏3
𝜆3
𝑑2
 𝑒2𝑙31] 𝐵3 − 𝑠3𝑒

𝑙31 (1 − √
𝜆2ℎ𝑏3

𝜆3ℎ𝑏2

 

) 𝑒
−√

ℎ𝑏3
𝜆3
𝑑2
+

 
𝜌3𝑆𝐴𝑅𝑚𝑎𝑥3+𝑄𝑚3

ℎ𝑏3
−
𝜌2𝑆𝐴𝑅𝑚𝑎𝑥2+𝑄𝑚2

ℎ𝑏2
}  

(E.12) 

𝐴2 = 0.5𝑒
√
ℎ𝑏2
𝜆2
𝑑2[𝑎21𝐵3 + 𝑎22] 

(E.13) 

𝐵2  = 0.5𝑒
−√

ℎ𝑏2
𝜆2
𝑑2[𝑏21𝐵3 + 𝑏22 ] 

(E.14) 

Adding and subtracting (5) and (6) will yield to equations (15) and (16) in which 𝐴1 and 

𝐵1 are expressed through 𝐴2 and 𝐵2 

𝐴1 = 0.5𝑒
√
ℎ𝑏1
𝜆1
𝑑1
[(1 + √

𝜆1ℎ𝑏2

𝜆2ℎ𝑏1
)𝐴2 𝑒

−√
ℎ𝑏2
𝜆2
𝑑1
+ (1 − √

𝜆1ℎ𝑏2

𝜆2ℎ𝑏1
)𝐵2 𝑒

√
ℎ𝑏2
𝜆2
𝑑1
 +

𝜌2𝑆𝐴𝑅𝑚𝑎𝑥2+𝑄𝑚2

ℎ𝑏2
−
𝜌1𝑆𝐴𝑅𝑚𝑎𝑥1+𝑄𝑚1

ℎ𝑏1
]  

(E.15) 

𝐵1 = 0.5𝑒
−√

ℎ𝑏1
𝜆1
𝑑1
[(1 − √

𝜆1ℎ𝑏2

𝜆2ℎ𝑏1
)𝐴2 𝑒

−√
ℎ𝑏2
𝜆2
𝑑1
+ (1 + √

𝜆1ℎ𝑏2

𝜆2ℎ𝑏1
)𝐵2 𝑒

√
ℎ𝑏2
𝜆2
𝑑1
+

𝜌2𝑆𝐴𝑅𝑚𝑎𝑥2+𝑄𝑚2

ℎ𝑏2
−
𝜌1𝑆𝐴𝑅𝑚𝑎𝑥1+𝑄𝑚1

ℎ𝑏1
]  

(E.16) 

Inserting (13) and (14) in (15) and (16), (17) and (18) are obtained, and (19) and (20) 

express 𝐴1 and 𝐵1 through 𝐵3. (19) and (20) can be written as (21) and (22) 

𝐴1 = 0.5𝑒
√
ℎ𝑏1
𝜆1
𝑑1
[(1 + √

𝜆1ℎ𝑏2

𝜆2ℎ𝑏1
) (0.5𝑒

√
ℎ𝑏2
𝜆2
𝑑2
𝑎21𝐵3 + (E.17) 
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𝑎220.5𝑒
√
ℎ𝑏2
𝜆2
𝑑2
 ) 𝑒

−√
ℎ𝑏2
𝜆2
𝑑1
+ (1 − √

𝜆1ℎ𝑏2

𝜆2ℎ𝑏1
) (0.5𝑒

−√
ℎ𝑏2
𝜆2
𝑑2
𝑏21𝐵3 +

0.5𝑒
−√

ℎ𝑏2
𝜆2
𝑑2
𝑏22) 𝑒

√
ℎ𝑏2
𝜆2
𝑑1
 +

𝜌2𝑆𝐴𝑅𝑚𝑎𝑥2+𝑄𝑚2

ℎ𝑏2
−
𝜌1𝑆𝐴𝑅𝑚𝑎𝑥1+𝑄𝑚1

ℎ𝑏1
]  

𝐵1 = 0.5𝑒
−√

ℎ𝑏1
𝜆1
𝑑1
[(1 − √

𝜆1ℎ𝑏2

𝜆2ℎ𝑏1
) (0.5𝑒

√
ℎ𝑏2
𝜆2
𝑑2
𝑎21𝐵3 +

𝑎220.5𝑒
√
ℎ𝑏2
𝜆2
𝑑2
 ) 𝑒

−√
ℎ𝑏2
𝜆2
𝑑1
+ (1 + √

𝜆1ℎ𝑏2

𝜆2ℎ𝑏1
) (0.5𝑒

−√
ℎ𝑏2
𝜆2
𝑑2
𝑏21𝐵3 +

0.5𝑒
−√

ℎ𝑏2
𝜆2
𝑑2
𝑏22) 𝑒

√
ℎ𝑏2
𝜆2
𝑑1
+
𝜌2𝑆𝐴𝑅𝑚𝑎𝑥2+𝑄𝑚2

ℎ𝑏2
−
𝜌1𝑆𝐴𝑅𝑚𝑎𝑥1+𝑄𝑚1

ℎ𝑏1
]  

(E.18) 

𝐴1 = 0.5𝑒
√
ℎ𝑏1
𝜆1
𝑑1
{[0.5𝑎21 (1 + √

𝜆1ℎ𝑏2

𝜆2ℎ𝑏1
) 𝑒

√
ℎ𝑏2
𝜆2
𝑑2
𝑒
−√

ℎ𝑏2
𝜆2
𝑑1
 + 0.5𝑏21 (1 −

√
𝜆1ℎ𝑏2

𝜆2ℎ𝑏1
) 𝑒

−√
ℎ𝑏2
𝜆2
𝑑2
𝑒
√
ℎ𝑏2
𝜆2
𝑑1
] 𝐵3 + 0.5𝑎22 (1 + √

𝜆1ℎ𝑏2

𝜆2ℎ𝑏1
) 𝑒

√
ℎ𝑏2
𝜆2
𝑑2
𝑒
−√

ℎ𝑏2
𝜆2
𝑑1
 +

0.5𝑏22 (1 − √
𝜆1ℎ𝑏2

𝜆2ℎ𝑏1
) 𝑒

−√
ℎ𝑏2
𝜆2
𝑑2
𝑒
√
ℎ𝑏2
𝜆2
𝑑1
  +

𝜌2𝑆𝐴𝑅𝑚𝑎𝑥2+𝑄𝑚2

ℎ𝑏2
−
𝜌1𝑆𝐴𝑅𝑚𝑎𝑥1+𝑄𝑚1

ℎ𝑏1
}  

(E.19) 

𝐵1 = 0.5𝑒
−√

ℎ𝑏1
𝜆1
𝑑1
{[0.5𝑎21 (1 − √

𝜆1ℎ𝑏2

𝜆2ℎ𝑏1
) 𝑒

√
ℎ𝑏2
𝜆2
𝑑2
𝑒
−√

ℎ𝑏2
𝜆2
𝑑1
+ 0.5𝑏21 (1 +

√
𝜆1ℎ𝑏2

𝜆2ℎ𝑏1
) 𝑒

−√
ℎ𝑏2
𝜆2
𝑑2
𝑒
√
ℎ𝑏2
𝜆2
𝑑1
] 𝐵3 + 0.5𝑎22 (1 − √

𝜆1ℎ𝑏2

𝜆2ℎ𝑏1
) 𝑒

√
ℎ𝑏2
𝜆2
𝑑2
𝑒
−√

ℎ𝑏2
𝜆2
𝑑1
 +

0.5𝑏22 (1 + √
𝜆1ℎ𝑏2

𝜆2ℎ𝑏1
) 𝑒

−√
ℎ𝑏2
𝜆2
𝑑2
𝑒
√
ℎ𝑏2
𝜆2
𝑑1
 +

𝜌2𝑆𝐴𝑅𝑚𝑎𝑥2+𝑄𝑚2

ℎ𝑏2
−
𝜌1𝑆𝐴𝑅𝑚𝑎𝑥1+𝑄𝑚1

ℎ𝑏1
}  

(E.20) 

𝐴1 = 0.5𝑒
√
ℎ𝑏1
𝜆1
𝑑1{𝑎11 𝐵3 + 𝑎12}  

(E.21) 

𝐵1 = 0.5𝑒
−√

ℎ𝑏1
𝜆1
𝑑1{𝑏11𝐵3 + 𝑏12}  

(E.22) 

Using (8) 𝐵3 is obtained. With 𝐵3 known 𝐴3, 𝐴2, 𝐵2, 𝐴1, 𝑎𝑛𝑑 𝐵1 can be obtained using (2), 

(13), (14), (21) and (22) 

𝐵3 =
−𝑎120.5𝑒

√
ℎ𝑏1
𝜆1
𝑑1
+ 0.5𝑐1𝑏12𝑒

−√
ℎ𝑏1
𝜆1
𝑑1
+ 𝑐2( 𝑠1 + 𝑇𝑎 − 𝑇𝑎𝑖𝑟)

(0.5𝑎11𝑒
√
ℎ𝑏1
𝜆1
𝑑1
− 0.5𝑏11𝑐1𝑒

−√
ℎ𝑏1
𝜆1
𝑑1
)

 
(E.23) 
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APPENDIX F 

For 3-layer geometry and model 𝑀2, starting from (1), the relationship between 𝐴3 and 

𝐵3 is obtained 

𝑇3(𝑥3
 = 𝑑3

 = 𝐿1) = 𝑇𝑎 (F.1) 

𝐴3 = −𝐵3 𝑒
2√
ℎ𝑏
𝜆3
𝐿1
+ (
𝜌3𝑆𝐴𝑅3𝑚𝑎𝑥
4𝜆3−ℎ𝑏3

) 𝑒
√
ℎ𝑏
𝜆3
𝐿1
𝑒−2𝐿1 −

𝑄𝑚3
ℎ𝑏3

𝑒
√
ℎ𝑏
𝜆3
𝐿1

= −𝐵3 𝑒
2𝑙31 + 𝑠3𝑒

𝑙31𝑒−2𝐿1 −
𝑄𝑚3
ℎ𝑏3

𝑒𝑙31 

(F.2) 

On the boundary fat-muscle: 

𝐴2 𝑒
−√

ℎ𝑏2
𝜆2
𝑑2
+ 𝐵2 𝑒

√
ℎ𝑏2
𝜆2
𝑑2
= 𝐴3𝑒

−√
ℎ𝑏3
𝜆3
𝑑2
+ 𝐵3 𝑒

√
ℎ𝑏3
𝜆3
𝑑2
− 𝑠3𝑒

−2𝑑2 +
𝑄𝑚3

ℎ𝑏3
+

𝑠2𝑒
−2𝑑2 −

𝑄𝑚2

ℎ𝑏2
  

(F.3) 

−𝐴2 𝑒
−√

ℎ𝑏2
𝜆2
𝑑2
+ 𝐵2 𝑒

√
ℎ𝑏2
𝜆2
𝑑2
= −√

𝜆3ℎ𝑏3

𝜆2ℎ𝑏2
𝐴3𝑒

−√
ℎ𝑏3
𝜆3
𝑑2
+√

𝜆3ℎ𝑏3

𝜆2ℎ𝑏2
𝐵3 𝑒

√
ℎ𝑏3
𝜆3
𝑑2
+

2
𝜆3

𝜆2
√
𝜆2

ℎ𝑏2
𝑠3𝑒

−2𝑑2 − 2
𝜆3

𝜆2
√
𝜆2

ℎ𝑏2
𝑠2𝑒

−2𝑑2  

(F.4) 

On the boundary skin-fat: 

𝐴1𝑒
−√

ℎ𝑏1
𝜆1
𝑑1
+ 𝐵1𝑒

√
ℎ𝑏1
𝜆1
𝑑1

= 𝐴2 𝑒
−√

ℎ𝑏2
𝜆2
𝑑1
+ 𝐵2 𝑒

√
ℎ𝑏2
𝜆2
𝑑1
− 𝑠2𝑒

−2𝑑1 +
𝑄𝑚2
ℎ𝑏2

+ 𝑠1𝑒
−2𝑑1 −

𝑄𝑚1
ℎ𝑏1

 

(F.5) 

−𝐴1 𝑒
−√

ℎ𝑏1
𝜆1
𝑑1
+ 𝐵1 𝑒

√
ℎ𝑏1
𝜆1
𝑑1
= [−√

𝜆2ℎ𝑏2

𝜆1ℎ𝑏1
𝐴2𝑒

−√
ℎ𝑏2
𝜆2
𝑑1
+√

𝜆2ℎ𝑏2

𝜆1ℎ𝑏1
𝐵2 𝑒

√
ℎ𝑏2
𝜆2
𝑑1
+

2
𝜆2

𝜆1
√
𝜆1

ℎ𝑏1
𝑠2𝑒

−2𝑑1   ] − 2
𝜆2

𝜆1
√
𝜆1

ℎ𝑏1
𝑠1𝑒

−2𝑑1  

(F.6) 

On air-skin interface 

𝐴1 =
√𝜆1ℎ𝑏1 + ℎ

√𝜆1ℎ𝑏1 − ℎ
𝐵1 +

ℎ

√𝜆1ℎ𝑏1 − ℎ
[−(

𝜌1𝑆𝐴𝑅1𝑚𝑎𝑥
4𝜆1−ℎ𝑏1

) +
𝑄𝑚1
ℎ𝑏1

+ 𝑇𝑎 − 𝑇𝑎𝑖𝑟)]

+
2𝜆1𝑐2𝑠1
ℎ

 

(F.7) 
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𝐴1 = 𝑐1𝐵1 + 𝑐2 ( −𝑠1 +
𝑄𝑚1
ℎ𝑏1

+ 𝑇𝑎 − 𝑇𝑎𝑖𝑟) +
2𝜆1𝑐2𝑠1
ℎ

 (F.8) 

Adding and subtracting (3) and (4) will yield to equations (9) and (10) in which 𝐴2 and 

𝐵2 are expressed through 𝐴3 and 𝐵3 

𝐴2  = 0.5𝑒
√
ℎ𝑏2
𝜆2
𝑑2
{𝐴3(1 + √

𝜆2ℎ𝑏3
𝜆3ℎ𝑏2

)𝑒
−√

ℎ𝑏3
𝜆3
𝑑2
+ 𝐵3(1 − √

𝜆2ℎ𝑏3
𝜆3ℎ𝑏2

)𝑒
√
ℎ𝑏3
𝜆3
𝑑2

− 𝑠3𝑒
−2𝑑2 +

𝑄𝑚3
ℎ𝑏3

+ 𝑠2𝑒
−2𝑑2 −

𝑄𝑚2
ℎ𝑏2

− 2
𝜆3
𝜆2
√
𝜆2
ℎ𝑏2

𝑠3𝑒
−2𝑑2

+ 2
𝜆3
𝜆2
√
𝜆2
ℎ𝑏2

𝑠2𝑒
−2𝑑2} 

(F.9) 

𝐵2 = 0.5𝑒
−√

ℎ𝑏2
𝜆2
𝑑2
{𝐴3(1 − √

𝜆2ℎ𝑏3
𝜆3ℎ𝑏2

)𝑒
−√

ℎ𝑏3
𝜆3
𝑑2
+ 𝐵3(1 + √

𝜆2ℎ𝑏3
𝜆3ℎ𝑏2

)𝑒
√
ℎ𝑏3
𝜆3
𝑑2

− 𝑠3𝑒
−2𝑑2 +

𝑄𝑚3
ℎ𝑏3

+ 𝑠2𝑒
−2𝑑2 −

𝑄𝑚2
ℎ𝑏2

+ 2
𝜆3
𝜆2
√
𝜆2
ℎ𝑏2

𝑠3𝑒
−2𝑑2

− 2
𝜆3
𝜆2
√
𝜆2
ℎ𝑏2

𝑠2𝑒
−2𝑑2} 

(F.10) 

Inserting (2) in (9) and (10), (11) and (12) are obtained. (11) and (12) can be written as 

(13) and (14) 

𝐴2  = 0.5𝑒
√
ℎ𝑏2
𝜆2
𝑑2
{𝐵3 [(1 − √

𝜆2ℎ𝑏3

𝜆3ℎ𝑏2
) 𝑒

√
ℎ𝑏3
𝜆3
𝑑2
− (1 + √

𝜆2ℎ𝑏3

𝜆3ℎ𝑏2
)𝑒2𝑙31𝑒

−√
ℎ𝑏3
𝜆3
𝑑2
] +

 𝑠3(1 + √
𝜆2ℎ𝑏3

𝜆3ℎ𝑏2
)𝑒𝑙31𝑒−2𝐿1𝑒

−√
ℎ𝑏3
𝜆3
𝑑2
− (1 + √

𝜆2ℎ𝑏3

𝜆3ℎ𝑏2
)
𝑄𝑚3

ℎ𝑏3
𝑒𝑙31𝑒

−√
ℎ𝑏3
𝜆3
𝑑2
− 𝑠3𝑒

−2𝑑2 +

𝑄𝑚3

ℎ𝑏3
+ 𝑠2𝑒

−2𝑑2 −
𝑄𝑚2

ℎ𝑏2
− 2

𝜆3

𝜆2
√
𝜆2

ℎ𝑏2
𝑠3𝑒

−2𝑑2 + 2
𝜆3

𝜆2
√
𝜆2

ℎ𝑏2
𝑠2𝑒

−2𝑑2}  

(F.11) 



151 

𝐵2  = 0.5𝑒
−√

ℎ𝑏2
𝜆2
𝑑2
{𝐵3 [(1 + √

𝜆2ℎ𝑏3
𝜆3ℎ𝑏2

)𝑒
√
ℎ𝑏3
𝜆3
𝑑2
− (1 − √

𝜆2ℎ𝑏3
𝜆3ℎ𝑏2

)𝑒2𝑙31𝑒
−√

ℎ𝑏3
𝜆3
𝑑2
]

+ 𝑠3(1 − √
𝜆2ℎ𝑏3
𝜆3ℎ𝑏2

)𝑒𝑙31𝑒−2𝐿1𝑒
−√

ℎ𝑏3
𝜆3
𝑑2

−
𝑄𝑚3
ℎ𝑏3

(1 − √
𝜆2ℎ𝑏3
𝜆3ℎ𝑏2

)𝑒𝑙31𝑒
−√

ℎ𝑏3
𝜆3
𝑑2

 

+−𝑠3𝑒
−2𝑑2 +

𝑄𝑚3
ℎ𝑏3

+ 𝑠2𝑒
−2𝑑2

−
𝑄𝑚2
ℎ𝑏2

+ 2
𝜆3
𝜆2
√
𝜆2
ℎ𝑏2

𝑠3𝑒
−2𝑑2 − 2

𝜆3
𝜆2
√
𝜆2
ℎ𝑏2

𝑠2𝑒
−2𝑑2} 

(F.12) 

𝐴2 = 0.5𝑒
√
ℎ𝑏2
𝜆2
𝑑2[𝑎21𝐵3 + 𝑎22] 

(F.13) 

𝐵2  = 0.5𝑒
−√

ℎ𝑏2
𝜆2
𝑑2[𝑏21𝐵3 + 𝑏22 ] 

(F.14) 

Adding and subtracting (5) and (6) will yield to equations (15) and (16) in which 𝐴1 and 

𝐵1 are expressed through 𝐴2 and 𝐵2 

𝐴1 = 0.5𝑒
√
ℎ𝑏1
𝜆1
𝑑1
[𝐴2(1 + √

𝜆1ℎ𝑏2

𝜆2ℎ𝑏1
)𝑒
−√

ℎ𝑏2
𝜆2
𝑑1
+ 𝐵2(1 − √

𝜆1ℎ𝑏2

𝜆2ℎ𝑏1
)𝑒
−√

ℎ𝑏2
𝜆2
𝑑1
−

𝑠2𝑒
−2𝑑1 +

𝑄𝑚2

ℎ𝑏2
+ 𝑠1𝑒

−2𝑑1 −
𝑄𝑚1

ℎ𝑏1
− 2

𝜆2

𝜆1
√
𝜆1

ℎ𝑏1
𝑠2𝑒

−2𝑑1 + 2
𝜆2

𝜆1
√
𝜆1

ℎ𝑏1
𝑠1𝑒

−2𝑑1]  

(F.15) 

𝐵1 = 0.5𝑒
−√

ℎ𝑏1
𝜆1
𝑑1
[(1 − √

𝜆1ℎ𝑏2

𝜆2ℎ𝑏1
)𝐴2 𝑒

−√
ℎ𝑏2
𝜆2
𝑑1
+ (1 + √

𝜆1ℎ𝑏2

𝜆2ℎ𝑏1
)𝐵2 𝑒

√
ℎ𝑏2
𝜆2
𝑑1
−

𝑠2𝑒
−2𝑑1 +

𝑄𝑚2

ℎ𝑏2
+ 𝑠1𝑒

−2𝑑1 −
𝑄𝑚1

ℎ𝑏1
+ 2

𝜆2

𝜆1
√
𝜆1

ℎ𝑏1
𝑠2𝑒

−2𝑑1 − 2
𝜆2

𝜆1
√
𝜆1

ℎ𝑏1
𝑠1𝑒

−2𝑑1]  

(F.16) 

Inserting (13) and (14) in (15) and (16), 𝐴1 and 𝐵1 are expressed through 𝐵3. (17) and 

(18) can be written as (19) and (20). 

𝐴1 = 0.5𝑒
√
ℎ𝑏1
𝜆1
𝑑1
{𝐵3 [𝑏210.5(1 − √

𝜆1ℎ𝑏2

𝜆2ℎ𝑏1
) 𝑒

−√
ℎ𝑏2
𝜆2
𝑑2
𝑒
−√

ℎ𝑏2
𝜆2
𝑑1
+ 𝑎210.5(1 +

√
𝜆1ℎ𝑏2

𝜆2ℎ𝑏1
) 𝑒

√
ℎ𝑏2
𝜆2
𝑑2
𝑒
−√

ℎ𝑏2
𝜆2
𝑑1
] + 𝑎220.5(1 + √

𝜆1ℎ𝑏2

𝜆2ℎ𝑏1
) 𝑒

√
ℎ𝑏2
𝜆2
𝑑2
𝑒
−√

ℎ𝑏2
𝜆2
𝑑1
+

(F.17) 
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𝑏220.5(1 − √
𝜆1ℎ𝑏2

𝜆2ℎ𝑏1
) 𝑒

−√
ℎ𝑏2
𝜆2
𝑑2
𝑒
−√

ℎ𝑏2
𝜆2
𝑑1
− 𝑠2𝑒

−2𝑑1 +
𝑄𝑚2

ℎ𝑏2
+ 𝑠1𝑒

−2𝑑1 −
𝑄𝑚1

ℎ𝑏1
−

2
𝜆2

𝜆1
√
𝜆1

ℎ𝑏1
𝑠2𝑒

−2𝑑1 + 2
𝜆2

𝜆1
√
𝜆1

ℎ𝑏1
𝑠1𝑒

−2𝑑1}  

𝐵1 = 0.5𝑒
−√

ℎ𝑏1
𝜆1
𝑑1
{[𝑏210.5𝑒

−√
ℎ𝑏2
𝜆2
𝑑2
(1 + √

𝜆1ℎ𝑏2

𝜆2ℎ𝑏1
)𝑒
−√

ℎ𝑏2
𝜆2
𝑑1
+ 0.5𝑒

√
ℎ𝑏2
𝜆2
𝑑2
(1 −

√
𝜆1ℎ𝑏2

𝜆2ℎ𝑏1
)𝑒
−√

ℎ𝑏2
𝜆2
𝑑1
𝑎21] 𝐵3 + 0.5𝑒

√
ℎ𝑏2
𝜆2
𝑑2
(1 − √

𝜆1ℎ𝑏2

𝜆2ℎ𝑏1
)𝑒
−√

ℎ𝑏2
𝜆2
𝑑1
𝑎22 +

0.5𝑒
−√

ℎ𝑏2
𝜆2
𝑑2
(1 + √

𝜆1ℎ𝑏2

𝜆2ℎ𝑏1
)𝑒
−√

ℎ𝑏2
𝜆2
𝑑1
𝑏22 − 𝑠2𝑒

−2𝑑1 +
𝑄𝑚2

ℎ𝑏2
+ 𝑠1𝑒

−2𝑑1 −
𝑄𝑚1

ℎ𝑏1
+

2
𝜆2

𝜆1
√
𝜆1

ℎ𝑏1
𝑠2𝑒

−2𝑑1 − 2
𝜆2

𝜆1
√
𝜆1

ℎ𝑏1
𝑠1𝑒

−2𝑑1}  

(F.18) 

𝐴1 = 0.5𝑒
√
ℎ𝑏1
𝜆1
𝑑1{𝑎11 𝐵3 + 𝑎12} 

 

(F.19) 

𝐵1 = 0.5𝑒
−√

ℎ𝑏1
𝜆1
𝑑1{𝑏11𝐵3 + 𝑏12} 

 

(F.20) 

Using (8), (19) and (20) 𝐵3 is obtained. With 𝐵3 known 𝐴3, 𝐴2, 𝐵2, 𝐴1, 𝑎𝑛𝑑 𝐵1 can be 

obtained using (2), (13), (14), (19) and (20). 

𝐵3 =
−𝑎120.5𝑒

√
ℎ𝑏1
𝜆1

𝑑1
+0.5𝑐1𝑏12𝑒

−√
ℎ𝑏1
𝜆1

𝑑1
+𝑐2( −𝑠1+

𝑄𝑚1
ℎ𝑏1

+𝑇𝑎−𝑇𝑎𝑖𝑟)+
2𝜆1𝑐2𝑠1

ℎ

(

 
 
0.5𝑎11𝑒

√
ℎ𝑏1
𝜆1

𝑑1
−0.5𝑏11𝑐1𝑒

−√
ℎ𝑏1
𝜆1

𝑑1

)

 
 

  
(F.21) 

 


