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Razvoj Lagrangeove metode za
simulaciju nenjutnovskih fluida

Sažetak

Ova disertacija predstavlja razvoj nove bezmrežne i Lagrangeove numeričke metodologije,
temeljene na metodi Lagrangeove diferencijalne dinamike (LDD), za simulaciju nenjut-
novskih fluida. Nenjutnovski fluidi, karakterizirani viskoznošću koja varira s brzinom
deformacije, pokazuju složena ponašanja strujanja ključna za širok raspon industrijskih
i prirodnih procesa. Točna numerička simulacija ovih strujanja bitna je za projekti-
ranje i optimizaciju procesa. Kao temelj uzeta je LDD metoda, koja koristi Lagrangeov
bezmrežni pristup uz prostorne operatore drugog reda točnosti izvedene iz konačnih ra-
zlika, te je proširena i primijenjena za modeliranje dinamike nenjutnovskih fluida. Ova
metoda nudi prednosti pri rukovanju sa složenim geometrijama, velikim deformacijama
i slobodnim površinama, koje su uobičajene u simulacijama nenjutnovskih fluida, zah-
valjujući svojoj Lagrangeovoj prirodi i bezmrežnoj diskretizaciji. Formulacija Navier-
Stokesovih jednadžbi diskretizirana je pomoću odvajanja jednadžbi tlakova i brzina,
gdje se tlak dobiva rješavanjem Poissonove jednadžbe, a brzina se rješava na implicitan
način kako bi se prilagodila promjenjivoj viskoznosti svojstvenoj nenjutnovskim flu-
idima. LDD metoda izbjegava potrebu za računalnom mrežom i koristi konzervativnu
Lagrangeovu advekciju. Nadalje, metoda pokazuje točnost drugog reda i nudi robusnu
alternativu drugim bezmrežnim metodama poput Smoothed Particle Hydrodynamics
(SPH) pružajući točnije polje tlaka i izbjegavajući probleme s vlačnom nestabilnošću.
Ova disertacija predstavlja matematičku formulaciju proširene LDD metode za nen-
jutnovske fluide i validira njezinu točnost i učinkovitost kroz niz referentnih primjera
relevantnih za scenarije industrijske obrade polimera i druge primjene, koje uključuju
složeno ponašanje fluida. Rezultantna metoda i njena implementacija predstavlja
moćan alat za simulaciju različitih fenomena u procesiranju polimera, biomedicinskom
inženjerstvu i drugim područjima koja uključuju složenu dinamiku fluida.

Ključne riječi

reologija, ne-Newtonovski fluidi, varijabilna viskoznost, Lagrangeov tok, bezmrežne
metode, viskoelastičnost, viskoplastičnost
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Development of Lagrange Method for
Simulating non-Newtonian Flows

Abstract

This thesis presents the development of a novel meshless and Lagrangian numerical
methodology, based on the Lagrangian Differencing Dynamics (LDD) method, for sim-
ulating non-Newtonian flows. Non-Newtonian fluids, characterised by their viscosity
varying with strain rate, exhibit complex flow behaviours crucial to a wide range of
industrial and natural processes. Accurate numerical simulation of these flows is es-
sential for process design and optimisation. The LDD method, a fully Lagrangian and
meshless approach utilising second-order consistent spatial operators derived from fi-
nite differences, is extended and applied to model non-Newtonian fluid dynamics. This
method offers advantages in handling complex geometries, large deformations, and
free surfaces, which are common in non-Newtonian flows, by virtue of its Lagrangian
nature and mesh-free discretisation. The pressure-velocity formulation of the Navier-
Stokes equations is solved using a split-step scheme, where the pressure is obtained
by solving a Poisson equation, and the velocity is solved in a implicit manner to ac-
commodate variable viscosities inherent to non-Newtonian fluids. The LDD method
avoids the need for a computational mesh and uses a volume-conservative Lagrangian
advection. Furthermore, the method demonstrates second-order accuracy and offers a
robust alternative to other meshless methods like Smoothed Particle Hydrodynamics
(SPH) by providing a more accurate pressure field and avoiding tensile instability is-
sues. The thesis presents the mathematical formulation of the extended LDD method
for non-Newtonian flows and validates its accuracy and efficiency through a series of
benchmark problems relevant to industrial polymer processing scenarios and other ap-
plications involving complex fluid behaviour. Consequently, this work offers a powerful
tool for simulating diverse phenomena in polymer processing, biomedical engineering,
and other fields involving complex fluid dynamics.

Keywords

rheology, non-Newtonian fluids, variable viscosity, Lagrangian flow, meshless method,
viscoelasticity, viscoplasticity
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1 Introduction

1.1 Rheology

Professor Eugene Bingham coined the term “rheology” in 1920, which means the science
of material deformation and flow [2]. Since then, rheology has grown into a complex,
multidisciplinary, and rapidly expanding research field. It focuses on the movement
of matter, including liquids, gases, and soft solids. Soft solids are those that deform
plastically when a force is applied to them. The liquid and gas states investigated
in this branch of physics differ from other fluids and gases in that they lack a single
coefficient of viscosity for a given temperature, i.e. they do not follow Newton’s viscosity
experiment law.

Non-Newtonian states are being studied, particularly because they are used in industry.
To manipulate fluids and soft solids, they must be evaluated at the microscopic and/or
molecular levels to determine the critical properties and mechanisms that these material
systems possess. Then, it is needed to examine specific material system applications
and provide an answer to industrial services regarding the material system’s rheological
behavior in the application. Material systems used in industry are divided into several
categories. They are broadly classified into three types: macromolecular systems,
multiphase systems, and macromolecular–multiphase systems. These classes include
polymer solutions, polymer melts, particle dispersions, emulsions, gels, and glasses.
High molecular weight fluids, such as polymer solution, viscoelastic or viscoplastic
fluids, and colloidal suspension, exhibit non-Newtonian flow properties, as do the vast
majority of biological fluids. Polymer solutions are mixtures of polymer and a solvent,
whereas polymer melts are plastics that have been heated to a high temperature and
begun to flow. Particle dispersions and emulsions are colloidal solutions in which a
solid is distributed in a liquid, or emulsions in which oil is dispersed in water or water
in oil, and are primarily two-phase systems. Gels are primarily solid-like materials that
are extremely soft. Glasses, unlike soft solid gels, are a hard and rigid type of solid
substance. Material systems of interest should be identified in order to determine which
specific category they fall into, allowing them to be evaluated and effective models to be
used and implemented. Food is an excellent example of how different material classes
can be combined. Because it contains polysaccharides, starch, and a wide range of

1



1 Introduction

polymers, as well as emulsions and crystals of specific food ingredients like salt and
sugar. Cement is another example of a macromolecular–multiphase system, as good
cement slurry now includes polymers to improve performance.

The predominant approach for simulating macroscopic flows is continuum mechan-
ics. The derivation of continuum constitutive equations from kinetic theories requires
closure approximations; nevertheless, in most computationally simulated real appli-
cations, equations for the constitutive model and material characteristics are derived
from rheology data. The application of equations for the constitutive models that
result from fitting of curves of rheometric flows (e.g., simple shear or uniaxial exten-
sional) for the description of more complex flows should be undertaken with precaution.
Viscoelastic flows, which are defined by the interaction of viscous and elastic effects,
are difficult to model numerically due to their complex behavior. Because of the stiff
nature of the hyperbolic differential constitutive equations, computational prediction
of viscoelasticity is sensitive to numerical instabilities, and physical and nonphysical
constitutive instabilities. For more than twenty years, one of the most important chal-
lenges in computational rheology has been the difficulty of numerically resolving the
constitutive equations, which has been known as the high Weissenberg number prob-
lem (HWNP) [3]. The HWNP manifests itself as a lack of simulation stability, which
causes numerical values to blow up. Depending on the flow problem, spatial discretiza-
tion, and numerical method, it is triggered when the Weissenberg number (also known
as the Deborah number) reaches a critical value. HWNPs play an important role in
viscoelastic flow as they illustrate circumstances in which elastic forces substantially
affect fluid behaviour, leading to intricate phenomena such as coil-stretch transitions
and elastic instabilities that complicate precise simulation and practical comprehension
across multiple technological and scientific applications. Overcoming these challenges
at high Weissenberg numbers is critical for predicting and controlling viscoelastic flow
behaviours in polymer processing, microfluids, and biomedical settings.

The domain of research dedicated to simulating viscoelastic flows has arrived at a piv-
otal crossroads, characterised by a synthesis of progress and obstacles. Researchers
have achieved significant strides in the development of numerical methods, particu-
larly concentrating on meshless methodologies for simulating the detailed behaviour of
viscoelastic materials. The present condition of the area is marked by an increasing
acknowledgement of the significance of precise simulations for various applications, en-
compassing industrial processes such as polymer production and biological systems like
blood circulation. The Oldroyd B model continues to be a focus of current constitutive
model research. Researchers are eager to investigate its application and integration
into numerical simulations, recognizing its ability to accurately capture materials’ vis-
coelastic properties. Even with these improvements, there are still challenges to face.
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Researchers are still looking into computational efficiency, stability, and how well sys-
tems can manage complex nonlinear viscoelastic behaviours. Additionally, the field is
starting to see the importance of benchmark problems and standard validation pro-
cedures for evaluating the accuracy and reliability of different numerical methods. A
detailed look at the current state of the research field shows an energetic atmosphere
full of knowledge and ongoing studies. By investigating closely at recent publications,
researchers can understand the details of meshless methods, how to implement consti-
tutive models, and the main challenges that need teamwork to improve simulations of
viscoelastic flows. Therefore, this thesis investigates the need for precise and efficient
numerics to capture the complex dynamics of viscoelastic materials in a wide range of
applications, from industrial processes to biological systems.

Meshless methods have become more popular for their enhanced capacity to manage
complicated shapes and dynamic fluid interactions, making them a viable choice for
simulating viscoelastic flows. A prominent meshless Lagrangian method in contem-
porary literature is the Lagrangian Differencing Dynamics (LDD), which serves as a
feasible alternative to conventional mesh-based techniques. The principal objective
of this study is to enhance the meshless Lagrangian Differencing Dynamics (LDD)
method [4, 5, 6, 7] for simulating viscoelastic flows by integrating the Oldroyd–B con-
stitutive model, thereby facilitating precise and efficient modelling of viscoelastic fluid
behaviours. LDD is a numerical technique that integrates Lagrangian and mesh-free
methodologies to accurately represent the dynamics of these fluids. In viscoelastic
simulations, meshless Lagrangian discretisation provides a unique benefit through its
particle-based property tracking, enabling the integration of memory effects. This the-
sis concentrates on derivative-based viscoelastic models, whereas integral formulations
present a feasible alternate approach. The LDD method is devoid of tensile instability
issues and can accommodate substantial negative pressures [4], unlike SPH schemes
which necessitate numerical and algorithmic interventions [8, 9, 10, 11, 12]. The mesh-
less design facilitates a more precise depiction of complex geometry and dynamic fluid
interfaces. This thesis aims to enhance numerical tools by offering a more precise and
economical approach to capturing the viscoelastic behaviour of materials. This thesis
demonstrates how the suggested method offers a significant advantage by circumvent-
ing the constraints of conventional mesh-based approaches. Its meshless Lagrangian
characteristic permits a more precise depiction of intricate geometries and dynamic
fluid interfaces, while more readily evading HWNP. The significance of this investiga-
tion resides in its capacity to enhance simulation accuracy, therefore enabling progress
in various domains, including polymer processing, biomedical engineering, and ma-
terials research. The method’s relevance to actual polymer fluid behaviour is shown
by the effective modelling of benchmarks pertinent to industrial polymer processing
contexts. The research tackles current numerical issues, and its noteworthy computa-
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tional capability supports the optimisation of industrial processes, the innovation of
novel materials, and the examination of biological fluid dynamics.

In order to understand why rheology is extremely complex to be numerically simulated,
the following subsections shortly introduce the idea of viscoplasticity and viscoelastic-
ity, while the further sections give deteails on relevant mathematics and numerics.

1.1.1 Viscoplasticity

Numerous fluids encountered in industrial applications and natural environments ex-
hibit behavior that deviates significantly from Newton’s law, which describes fluids with
a constant viscosity. These non-Newtonian fluids often display complex flow character-
istics. Among them, viscoplastic fluids represent a crucial category, distinguished by
the presence of a yield stress. This means they behave like a rigid solid when subjected
to stresses below a certain threshold and only begin to flow like a liquid once this yield
stress is exceeded.

The Bingham model [2, 13] is a commonly employed and foundational model for de-
scribing viscoplastic behavior. Due to its relative mathematical simplicity (as a two-
parameter model), it is frequently used in engineering applications across diverse in-
dustries such as food processing, drilling, oil and gas, and chemicals. The defining
characteristic of a Bingham fluid is its dual nature: depending on the applied stress, it
behaves either as a solid or as a viscous liquid. For flow to initiate, the applied shear
stress must surpass the fluid’s inherent yield stress. Unlike Newtonian fluids, which flow
immediately upon the application of any stress (having negligible yield stress), a Bing-
ham fluid will resist initial deformation. This yield behavior is critical in applications
like suspending particles in drilling muds, preventing the sag of paints, or modeling the
flow of substances like fresh cement, debris flows, avalanches, and lava flows. Examples
of materials that can exhibit viscoplastic characteristics include mud, certain paints,
some food products like ketchup or mayonnaise (which also show shear-thinning), and
concentrated suspensions.

While viscoplasticity is defined by this yield stress, other non-Newtonian fluids ex-
hibit different time-independent behaviors where viscosity changes with shear rate but
without a distinct Bingham-like yield point. These are broadly termed purely vis-
cous non-Newtonian fluids, including: shear-thinning fluids (their effective viscosity
decreases as the shear rate increases; polymer solutions, biological fluids, mud or may-
onnaise) and shear-thickening fluids (their effective viscosity increases as the shear rate
increases).

Models like the Power Law [14] provide a generalized framework for describing these
shear-dependent viscosities (shear-thinning for flow-behavior index n<1, shear-thickening
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for n>1, and Newtonian for n=1). The Casson model [15] is another model often used
for shear-thinning materials, particularly those also exhibiting a yield stress distinct
from the Bingham idealization. Understanding these varied behaviors is essential for
engineers and designers to accurately predict flow in numerous industrial applications.

1.1.2 Viscoelasticity

Numerous synthetic and natural fluids demonstrate complex rheological behaviour,
with viscoelasticity being a significant fluid characteristic. The accurate simulation
of viscoelastic flows is essential in multiple industrial and biological applications, in-
cluding fluid dynamics and the study of materials. Complex behaviours of fluids with
elastic properties are observed in processes ranging from polymer manufacture to phys-
iological systems. This study will employ a meshless Lagrangian approach to simulate
viscoelastic flows, utilising the Oldroyd-B constitutive model, renowned for its efficacy
in representing intricate viscoelastic phenomena. As companies increasingly depend
on numerical simulations to enhance processes and evaluate material behaviour, the
generation of reliable computational tools is essential. Lagrangian meshless methods
provide a potential technique for precisely and efficiently recording the dynamics of
viscoelastic flows. This study seeks to fill existing knowledge gaps in the numerics of
Lagrangian meshless methods, aiming to enhance the basic comprehension of viscoelas-
tic phenomena and to foster optimisation and innovative thinking in various areas such
as material technology and biomedical research.

Continuum mechanics is the predominant method utilised for simulating macroscopic
flows. Closure assumptions prove crucial for deriving continuum constitutive math-
ematical equations from kinetic theories. In actual computational simulations, the
constitutive model and the material characteristics are generally obtained via rheologi-
cal measurements. Nonetheless, it is crucial to approach the application of constitutive
models obtained from curve-fitting of rheometric flows (e.g., simple shear or uniax-
ial extensional) to more complex flows with critical thought [16]. Viscoelastic flows
present challenges in simulation due to their sophisticated behaviour, characterised
by the interplay of viscous and elastic processes [17]. The stiff nature of the hyper-
bolic form of the differential constitutive equations renders the numerical modelling
of these viscoelastic flows vulnerable to numerical instabilities, physical flow fluctua-
tions, and nonphysical constitutive instabilities. [18, 16]. The numerical difficulty of
resolving these constitutive equations, known as the high Weissenberg number problem
(HWNP), has presented a considerable obstacle in computational rheology for almost
two decades.

The domain of research dedicated to simulating viscoelastic flows has now arrived at
a pivotal point characterised by a synthesis of progress and obstacles. Researchers
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Figure 1.1: An example of an unstructured volume mesh prepared for a FVM simula-
tion.

have achieved notable advancements in numerical approaches, particularly emphasis-
ing meshless techniques for modelling the complex dynamics of viscoelastic materials.
The current state of the discipline is marked by a growing recognition of the impor-
tance of accurate simulations for applications ranging from industrial processes, such as
polymer production, to biological systems, such as blood circulation. The preliminary
mathematical models introduced in the field of continuum mechanics were formulated
by Oldroyd [19], nevertheless, the Oldroyd–B model remains a primary focus in research
into constitutive models. The Upper-convected Maxwell (UCM), Oldroyd-B, and coro-
tational Maxwell models exemplify earliest constitutive equations that are differential
equations for the extra–stress tensor. Castillo Sánchez et al. [20] critically analysed
the prevalent application of the Oldroyd-B model in forecasting instabilities in various
shearing flows of viscoelastic fluids, highlighting its qualitative efficacy while acknowl-
edging its limitations and proposing enhancements through more realistic constitutive
models, alongside addressing unresolved issues in viscoelastic stability. Castillo et al.
[20] authored a review article celebrating the birth of James Oldroyd, analysing the
widespread application of the Oldroyd-B model in forecasting instabilities in various
shearing flows of viscoelastic fluids. The article highlights its qualitative efficacy de-
spite inherent limitations and explores potential enhancements through more realistic
constitutive models, as well as unresolved enquiries in viscoelastic stability.

1.2 Numerical methods

1.2.1 Mesh-based methods

Mesh-based methods require a discretization of space in the form of subdivisions, which
make a grid or a mesh. The mesh can contain complex topology, i.e. connectivity
graphs between elements, and it can be locally refined where needed. An example
of an a volumetric mesh for the FVM is shown in Figure 1.1. Popular mesh-based
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Figure 1.2: An example of an unstructured volume mesh prepared for a FVM simula-
tion.

methods are listed below, and their characteristics are briefly described.

Boundary element method (BEM)

The boundary element method (BEM) is a fully equipped numerical technique for
solving integral partial differential equations. Instead of using the entire space defined
by the partial differential equation, the boundary element method attempts to fit the
boundary values into the integral equation using the given boundary conditions. The
integral equation can be used in the post-processing phase to directly compute the
numerical solution at any desired point on the domain’s boundary. As a result, the
BEM discretizes the boundary and it is unsolvable for homogeneous and non-linear
problems. It is more appropriate for domains that are infinite or semi-infinite.

Finite difference method (FDM)

The finite difference method (FDM) is a numerical technique for approximating dif-
ferential equations. The FDM technique in a simple way solves linear or nonlinear
ordinary differential equations (ODEs) or partial differential equations (PDEs). The
method uses finite differences to replace derivatives in a differential equation. Then it
converts them into a system of linear equations that matrix algebra can solve. The
algebraic equations that result are solved, and an approximate solution is obtained.
The domain must be structured in order to to yield accurate derivatives and therefore
produce. Simple forms of FDM are inapplicable in unstructured domains, and mesh
refining worsens conditioning. Generalized FDM, on the other hand, can be applied to
complicated domains in a mesh-free manner, which is explained below.

Finite element method (FEM)

The finite element method (FEM) solves differential equations in two or three space
variables numerically. The method is capable of dealing with complex domains. Space
discretization divides large systems into smaller parts, known as finite elements. Finite
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elements accurately represent the complex geometry, and they can include dissimi-
lar material properties. They are building the object’s mesh, which represents the
numerical domain used for calculations with a finite number of elements. The FEM
formulation of the boundary value problem yields an algebraic equation system. Over
the entire domain, the unknown function is approximated. Simple equations represent-
ing finite elements are combined to form a large system of equations that models the
entire problem. In this manner, an easy representation of the total solution is obtained,
as well as the capture of local effects. When the domain is discretized with many el-
ements, conditioning issues arise. The FEM is more difficult and time-consuming to
implement than the FDM. Both FEM and FDM struggle with large-scale problems
and sparse matrices.

Particle Finite Element Method (PFEM)

Particle Finite Element Method (PFEM) models complex multidisciplinary engineering
problems by combining Lagrangian particles and FEM. It is a tool for resolving multi-
physics problems in evolving domains. The PFEM discretizes the physical domain with
a mesh, and the governing PDEs are solved using the standard FEM method. The mesh
nodes move according to the equation of motion when the fully Lagrangian approach is
used. They behave like particles, and each particle has its own set of mathematical and
physical properties. Mesh distortion is a common problem for mesh-based Lagrangian
solvers, and it is usually resolved by creating a new mesh when the old one is too
distorted. By keeping the nodes of a previous mesh fixed, PFEM avoids remapping
from one mesh to another.

Finite volume method (FVM)

The finite volume method (FVM) is numerical method that solves PDEs. FVM is based
on the mass conservation equations, described using fluxes. The concept of dividing
a domain into finite volumes or cells is similar to that of the FEM. The conservation
law is implemented in such a way that mass that enters the cell must exit the cell on
the other side. In other words, the divergence term in volume integral is converted
to surface integral using the divergence theorem. These terms represent fluxes at the
surface of each finite volume cell. The method is suitable for unstructured meshes.
The FVM can be compared with FDM in terms of using approximate derivatives in
node points and with FEM by creating local approximations in order to get the global
result.
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Figure 1.3: A representation of meshless discretization as a point cloud.

Immersed boundary method (IBM)

The immersed boundary method (IBM) is approach for simulating fluid-structure in-
teraction (FSI). It was first used to study blood flow through heart valves. The method
solves coupled equations of motion for an elastic incompressible structure in a viscous
and compressible fluid environment. It solves incompressible NS equations in partic-
ular. Delta function kernel equations describe the interaction of structure and fluid.
The idea is that when the structure moves and deforms, there will be deformation that
will push the structure to its preferred position, and the fluid near the structure will
feel those effects. Similarly, when the fluid is moving, the structure needs to move at
that same fluid velocity as well. The method employs two distinct grids. The first
grid represents the fluid and is known as the Eulerian frame or grid. There are no
individual fluid particles floating around; there are positions that are throwing down a
velocity probe and measuring the fluid velocity at these positions through the simula-
tion. There is, on the other hand, an actual immersed boundary or Lagrangian frame.
That structure is deformable and has some physical material properties. Both grids are
stacked on top of each other and communicate using differential equations as described
below. Fiber models are material properties that can be implemented in a variety of
ways. The fiber models are those that makes this method powerful.

1.2.2 Meshless Methods

Instead of discretizing space by finite volumes or finite elements, meshless methods
discretize space as point clouds. The chunk of fluid volume is represented by a particle,
while a point describes the state of fluid without the volume information. An example
how the point cloud can replace the mesh discretization is shown in Figure 1.3.
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Figure 1.4: Meshless discretization.

Smoothed Particle Hydrodynamics (SPH) methods

Smoothed Particle Hydrodynamics (SPH) is a particle-based simulation method for
solid mechanics and fluid flows. It can be used to calculate free surface flows or large
boundary displacements. The continuum is defined as a cloud of discrete particles
each with its own set of properties. The SPH defines the continuum description as
an interpolation problem. The continuum field can be reconstructed by interpolating
the scattered data. SPH represents particles in 2d and 3d using a Gaussian-like func-
tion. The end result is a smooth particle representation. It was thus given the name
"smoothed" particle hydrodynamic. The Gaussian-like function is also known as the
kernel function. It is possible to achieve a constant and continuous function by stack-
ing particles together. Essentially, in the SPH, any type of PDE, such as conservation
law, is transformed into an integral equation. After that, the kernel estimate provides
an approximation for predicting field variables at discrete points. Changing the kernel
functions and smoothing length can have an effect on the results as well as parti-
cle distribution along the axis. Furthermore, particle distribution significantly affects
the gradient accuracy. Due to the lack of mesh, the calculation and implementation
procedures are simplified, and the code can be fully parallelized.

Moving Particle Semi-Implicit (MPS) methods

The Moving Particle Semi-Implicit (MPS) method is a Lagrangian method for free-
surface incompressible flows. By solving the Navier-Stokes equations in a Lagrangian
framework, fluid can be represented by particles whose motion is calculated by a kernel
function based on interaction with neighboring cells. To divide each time step into
prediction and correction steps, the fractional step method is used. The method is
a derivative of the SPH method and was created to address the shortcomings of the
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SPH method for liquids and free-surface problems. The MPS is similar to SPH in that
it provides approximation of the strong form of PDEs. The MPS employs simplified
differential operators. The method employs local weighting in the absence of a kernel
gradient. Basic SPH is used for compressible fluids, whereas weakly compressible SPH
is used for liquid problems where the density is relatively constant. The kernel used
in MPS is more of an asymptotic function than a smooth function like in SPH. Which
of the following is a more natural description of particle-particle interaction. Because
this is a semi-implicit method, the solution differs from SPH, which is a fully explicit
method.

Generalized Finite Difference Method (GFDM)

The FDM contributed significantly to the generalized finite difference method (GFDM).
In contrast to FDM, which requires the creation of an orthogonal grid, GFDM can be
applied to an irregular set of points. It only requires the node coordinates. The
method is applicable to any type of continuously changing domain geometry and can
properly handle boundary conditions. The GFDM employs interpolation based on the
Taylor series expansion and weighted least-squares fitting. In the method, it is critical
to determine the effects of the weighting function, radius of influence, and stability
parameters on time-dependent problems. Higher order approximations can be used
to control the precision of the GFDM. Any physical or geometrical nonlinearity that
occurs has no effect on the algorithm.

Finite Pointset Method (FPM)

The finite point-set method (FPM) is a numerical method used in continuum mechan-
ics. FPM is a strong formulation that models PDS through direct operator approxima-
tion. For the FPM, the moving least squares (MLS) method is used and developed. In
FPM, the fluid is represented by a collection of sampling points with local properties
such as the pressure and velocity. This method differs from the others in that it allows
for the use of a mixed Lagrangian-Eulerian approach. The points can move in a La-
grangian manner along with the flow or they can be fixed while the flow passes by them
(Eulerian approach). In the Lagrangian approach, points can be added or removed to
maintain the specified density. Smoothing length is commonly used to specify density.
If increased accuracy is required, points could also be added in the Eulerian approach.
The neighbor points are not fixed in either approach and are determined at each time
step. The FPM, like most of mesh-free methods, can handle complex and/or time-
evolving geometries and moving phase boundaries without additional computational
effort. However, in order to produce good results, the points must cover the entire
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domain area. The points are not allowed to have gaps between them, which means
that each point must have a certain number of neighbors and cannot cluster.

Discrete Element Method (DEM)

The Discrete Element Method (DEM) is designed to simulate the collective behavior
of a large number of distinct interacting particles. DEM explicitly tracks the motion,
translation and rotation, of each individual particle based on Newton’s laws of motion.
Inter-particle forces are calculated directly from contact mechanics models, which de-
fine how particles interact upon collision or contact, typically incorporating repulsive,
dissipative, and frictional components. The overall macroscopic behavior of the gran-
ular assembly or particulate system then emerges from the sum of these numerous
individual particle interactions and motions. Its primary strength lies in its ability
to provide micro-mechanical insights into granular systems, revealing phenomena such
as force chain development, stress arching, particle segregation, that are difficult to
capture with continuum approaches. However, when considering the simulation of
non-Newtonian fluids, the computational cost sufficiently large number of discrete el-
ements to avoid scale effects can become prohibitively expensive. Secondly, defining
appropriate inter-particle contact laws that accurately replicate the complex rheology
of a non-Newtonian fluid is non-trivial and often requires significant phenomenological
calibration or multi-scale bridging.

1.3 Past research overview

BEM. The BEM is used in microfluidic pumping of non-Newtonian blood flow in
combination with immersed boundary-lattice Boltzmann method (IB-LBM) Ren et
al. [21]. The results of the calculations in the porous cavity show that BEM can be
used effectively to solve transport phenomena in a saturated porous medium Jecl et
al. [22, 23]. Florez et al. [24] used the BEM method to solve non-Newtonian flow in
multi-domain problem that included viscous dissipation, temperature dependent vis-
cosity, and natural convection. The multi-domain technique is a method of domain
partitioning that divides the domain into smaller parts. Included effects brought nu-
merical results closer to experimental results. Giraldo et al. [25] tracked motion and
deformation of shear-thinning drop suspended in a Newtonian circular Couette flow
(flow of a viscous fluid between two surfaces) with BEM method. The apparent viscos-
ity was modeled wit Power Law model. The results revealed that non-Newtonian drops
had larger deformations than Newtonian drops due to a general decrease in viscosity.
The local viscosities were found to be significantly influenced by both the velocity field
generated by the internal cylinder’s motion and the surface tension forces.
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FDM. Eldabe et al. [26] investigated non-Newtonian Casson fluid with magnetohydro-
dynamics (MHD) boundary layer flow on a moving wedge with heat and mass transfer.
Consideration is given to the effects of thermal diffusion and diffusion thermo with an
induced magnetic field. This approximate numerical solution was found to be in good
agreement with the analytical solution. Malkus et al. [27] investigated plane slow flow
of a Maxwell fluid over a transverse slot. The FDM and FEM methods were used to
obtain the results. FDM uses the differential form of the constitutive equation, whereas
FEM uses the integral form. The two methods yield different results, especially at low
De numbers. Extrapolation of the results to mesh with infinitesimally small spacing,
on the other hand, reveals good overall agreement between the two methods. Sankar
et al. [28] developed computational model to investigate the effects of a magnetic field
in a pulsatile blood flow through narrow arteries with mild stenosis. The blood was
treated as a Casson fluid. The simplified nonlinear partial differential equation is solved
using FDM. Velocity is obtained with explicit finite-difference scheme. It is discovered
that the velocity and flow rate drop as the Hartmann number increases, whereas the
opposite pattern is observed for the wall shear stress and longitudinal impedance. Nu-
merical simulations of complex rheological models in the HiGTree/HiGFlow system,
demonstrating successful reproduction of shear-banding and yield-stress behaviors, are
reported by Castillo-Sánchez et al. [29] through the implementation of finite differences
on hierarchical grids and a moving least squares interpolation technique. Numerical
simulations of the Modified-Bautista-Manero (MBM) thixotropic-viscoelastic model
in expansion-contraction geometries were conducted by Castillo Sánchez et al. [30],
demonstrating agreement with existing literature and providing insights into the be-
havior of corner vortices under varying Deborah and Reynolds numbers, especially in
the unexplored 4:1:4 geometry. Castelo et al. [31] presented a moving least squares
(MLS) Eulerian meshless interpolation method, facilitating intricate mesh arrange-
ments while preserving overall precision, as evidenced by simulations of generalized
Newtonian and viscoelastic fluid dynamics.

FEM. The Finite Element Method (FEM) was used to investigate mostly viscoplastic
flows. In the 1980s, viscoelastic fluids were challenging to simulate due to loss of con-
vergence. Fortina et al. [32] investigated numercial schemes for high De numbers. The
problem of the convergence loss has tried to be resolved by using upwinding schemes.
The simulations were done by decoupling the velocity and stress. The method had
drawbacks and the authors suggested the use of better iterative schemes. Szady et
al. [33] introduced a new discrete elastic-viscous-split-stress EVSS-G/FEM method
which increases numerical stability compared to the original EVSS/FEM method. The
results are obtained by simulating the steady-state flow in an eccentric rotating cylin-
der and a flow through a tube with wavy walls and square array. The authors report
that any instabilities in the results came either by the finite element approximation or
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the time integration method, that is why they used implicit time integration method.
They have proved that with the EVSS-G/FEM method calculations are stable for De
> 100, while simulations with EVSS/FEM are unstable even for De > 5. Grillet et al.
[34] in their study used mixed (DEVSS/hp-SUPG) FEM in order to simulate the effect
of fluid elasticity and stress distribution in lid-driven cavity flow. They have treated
idealized Taylor’s corner, i.e. corner singularities by leaking a small amount of fluid
which allowed convergence of the solution. Kren et al. [35] formulated the fundamen-
tal continuity and Navier-Stokes equations for Newtonian fluids by employing specific
constitutive equations for viscosity to address non-Newtonian fluid flow. The spatial
discretization is conducted by employing the FEM method. The method is tested in
the total knee replacement by modeling the synovial fluid flow. The method yielded
decoupled solutions for fluid flow with deformations. Convection in a square cavity
with the Bingham model without regularization was tested in the work of Huligol et
al. [36]. The FEM method with the operator-splitting method was used to solve the
flow with differently heated vertical sides of the cavity. The yielded and unyielded zones
of the flow were found to be easily obtainable. In the paper by Mackay and Phillips
[37], a stabilised finite element scheme for compressible nonisothermal viscoelastic fluid
flows is presented, exploring the effects of compressibility, viscoelasticity, and thermal
influences on benchmark problems such as lid-driven cavity and natural convection
flows.

FVM. The Finite Volume Method (FVM) is used in viscoelastic fluid flows. Nefyotou
et al. [38] research the non-Newtonian flow effects using generalized Newtonian con-
stitutive equations using the Finite Volume Method (FVM). The FVM solver scheme
caused the use of the pressure-correction method in combination with the SIMPLE al-
gorithm. The convective term was calculated by using the third-order accuracy QUICK
differencing scheme. In this way, numerical diffusion effects have been avoided. The
lid-driven cavity flow is performed for Newtonian and non-Newtonian flows using the
viscous models Power Law and Quemada, and viscoplastic models modified Bingham
and Casson. The paper investigates the non-dimensional impact of non-Newtonian
models and the shear-thickening or shear-thinning characteristics of the fluid. Zou
et al. [39] integrated the Lattice Boltzmann method (LBM) with the Finite Volume
Method (FVM) and proposed a system for incompressible viscoelastic fluid flow. The
novel scheme has the reliability and scalability of LBM and retains the precision and
generality of the FVM. The findings are consistent with empirical and numerical results
of other FVM schemes. De et al. [40] simulated unsteady viscoelastic fluid with FENE-
P model on the 3D porous medium employing FVM with staggered grid. Boundary
conditions were applied using a second-order immersed boundary method (IBM) which
had previously been used only for Newtonian fluids. Simulations were conducted for De
number up to 2.0 and low Reynolds number (Re = 0.01) although the cost of the simu-
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lation was high. De et al. [41] researched creeping flow of a viscoelastic fluid through a
porous 3D medium using FVM-IBM. Increased resistance of flow was associated with
an increase in De number. A topology analysis of the flow was performed and it was
found that most mechanical energy was dissipated in shear-dominated regions, even at
increased viscoelasticity. Meburger et al. [42] present a numerical study that simulates
non-isothermal viscoelastic flows at high Weissenberg numbers using a finite volume
method utilizing the root conformation approach on unstructured meshes, demonstrat-
ing stable solutions and validating the thermo-rheological model against experimental
data.

PFEM. In Lagrangian methods, and therefore in Particle Finite Element Method
(PFEM), the convective term is not included in the momentum equation, so there is
no need for numerical stabilization. But the incompressibility constraint still requires
the treatment of stabilized numerical methods. In addition, when large deformations
are expected, the Lagrangian approach is more preferable instead of fixed mesh meth-
ods. An extensive review of the Particle Finite Element Method (PFEM), outlining its
theory, applications, advantages, and disadvantages for simulating multi-physics prob-
lems in evolving domains, was presented by Cremonesi et al. [43]. Salazar et al. [44]
employed the PFEM to simulate fluid-structure interaction in landslides. Landslides
produce impulse waves, and the unpredictable kinematics of the displaced material
complicate the calculation of fluid-solid interactions. Application of the method was
presented through case studies and actual full-scale measurements where the method
provides a good risk analysis that can be used to estimate future full-scale events.
Celigueta et al. [45] presented the procedure for coupling the FEM for Eulerian and
paticle FEM (PFEM) for Lagrangian flows with the discrete element method (DEM).
The PFEM-DEM method calculates the drag force on fluid particles for non-Newtonian
fluid by predicting the terminal velocity. The method was tested for the cuttings trans-
port process (hole-cleaning) full of circulating fluids. Cremonesi et al. [46] did a number
of tests on Newtonian and non-Newtonian fluids in order to validate PFEM method.
The method is based on a Lagrangian formulation of the Navier-Stokes equations with
an explicit finite-element approach for weakly compressible fluids. The Bingham dam-
break test showed good agreement with the experimental results. Larese [47] has
introduced a stabilized mixed PFEM for the calculation of non-Newtonian viscoplas-
tic flows. The Bingham model with variable yield threshold in combination with the
Mohr-Coulomb resistance criterion was used to analyze the deformation of granular
non-cohesive material. The Bingham model has been tested on benchmarks, but does
not adequately describe the behavior of the granular slope. The introduced variable
yield-threshold does not have a mesh-size limitation, and yet it adequately describes
materials with internal friction angles below 45°. Franci and Zhang [48] simulated free-
surface Bingham fluids using the Lagrangian approach. Two- and three-dimensional
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simulations are done using the PFEM, and solid structures are simulated by employing
FEM. Franci and Zhang [48] showed a lot of tests including a 3D fresh concrete slump
problem. In particular, this test is the most widely accepted tool for measuring cement
consistency at the work site, as viscometers are not accepted when it comes to ongoing
construction. Della Vecchia et al. [49] examined Bingham fluids, focussing on the rhe-
ological properties of water-soil mixes during dam-break experiments. The numerical
analysis investigated the viscosity and yield stress of the Bingham model by CFD-
PFEM parametric studies. Since the yield stress and viscosity could not be recognized
separately from the position of the evolving liquefied mass in the experiment, these pa-
rameters were attempted to be identified with PFEM simulations. They are obtained
by monitoring the evolving aspect ratio of the flow mass or fluid pressure on a rigid
obstacle. The results of the PFEM revealed linearity between researched parameters.
A particle finite element method (PFEM) implementation for simulating viscoelastic
free-surface flows, validated against benchmark flows, including an implementation of
the Oldroyd-B constitutive model and a new approach for applying unilateral Dirichlet
boundary conditions, was presented by Rizzieri et al. [50]. A direct numerical simu-
lation (DNS) study of polymer-laden turbulent pipe flow, investigating the impact of
polymer parameters and contrasting the FENE and FENE-P models using a two-way
coupled Lagrangian approach, was presented by Serafini et al. [51], revealing the limi-
tations of Peterlin’s approximation and proposing a new polymer Reynolds number as
a key dynamic parameter.

MPM. Gordon et al. [52] proposed a novel variant of the Material Point Method
(MPM) for simulating incompressible viscoelastic flows, demonstrating its effectiveness
through various flow scenarios and achieving quadratic convergence for the Oldroyd-B
fluid. Recently there are even neural network–based methods proposed to solve non-
Newtonian flows [53, 54]. Zhou and Sun [55] propose a weakly compressible B-spline
material point method for simulating complex non-Newtonian power law flows, demon-
strating its efficacy in capturing various flow features and interactions. Zhou, Hua, and
Sun [56] introduce a non-Newtonian general Cross model into the three-dimensional
B-spline material point method to effectively simulate granular flow and impact be-
haviors, demonstrating its applicability in geotechnical engineering problems such as
landslides and debris flows. Su et al. [57] proposed a unified second-order accurate
MPM formulation for simulating viscoelastic liquids with phase change, integrating
various viscosity models and demonstrating its application in 3D simulations. Li, So-
villa, Jiang, and Gaume [58] applied a three-dimensional material point method to
model flow regimes in snow avalanches, revealing distinct flow behaviors and textures,
and validating their findings with a real avalanche case in Switzerland. Li, Yao, Sun,
and Wu [59] present a monolithic method using the material point method to analyze
fluid-structure interactions in geohazards, demonstrating its reliability through various
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benchmark problems and comparisons with laboratory tests. Ceccato, Yerro, and Di
Carluccio [60] reviewed the Material Point Method’s applications in simulating land-
slides, highlighting its capabilities, challenges, and the need for further advancements in
methodology. Kularathna et al. [61] presented a semi-implicit material point method
for modeling coupled soil deformation and pore fluid flow, which improved numerical
stability and reduced pressure oscillations in saturated soils.

SPH. The Smoothed particle hydrodynamics (SPH) method is widely used for a va-
riety of fluid flow simulations Monghan et al. [62]. It is a Lagrangian and meshless
method, suitable for simulating large deformations of solids and fluid flow, and there-
fore, it has been researched since its first publications Gingold et al. [63], Lucy et
al. [64]. Researchers and scientists have been developing the SPH method, solvers
and models according to the type of flow, although its traditionally formulation suffers
from an inaccurate pressure field Xenakis et al. [65]. The SPH has also been applied
to non-Newtonian problems including viscoelastic transient free-surface flows, such as
mud and molding flows Fanf et al. and Shao et al. [10, 66], while Hossein et al. [67]
presented a GPU implementation of the method to achieve better performance. Shao
and Lo et al. [66] simulated a dam-break problem and discussed flow features of New-
tonian and non-Newtonian flows. The simulations are conducted with the use of truly
Incompressible SPH (ISPH) scheme for simulate divergence-free free surface flows. The
advantage resides in the simplicity of monitoring the free surface by an approach anal-
ogous to that utilised in the moving particle semi-implicit (MPS) method. The results
were consistent with the experiments. Ma et al. [68] in his paper presents a two-phase
SPH model utilizing the Oldroyd-B constitutive model and modified Shields criterion
to predict sediment transport and erosion in free-surface flow, incorporating correction
techniques; the model effectively simulates sediment transport and erosion phenomena
under various scouring conditions, demonstrating agreement with earlier studies. Fan
et al. [9] devised a matrix-free, implicit SPH solution for very viscous non-Newtonian
flows characterised by elevated pressure regions. The conventional, explicit SPH tech-
nique proved impractical since it required an exceedingly small time step to provide
a robust simulation. Artificial force is created between the particles in order to stabi-
lize the system, i.e. to prevent the tensile instability. With the modified Power Law
model used, the method turned out to be suitable for simulating the flow of polymer
fluids in the molding process. A 2D incompressible SPH algorithm incorporating a
log-conformation formulation with an elasto-viscous stress splitting (EVSS) technique
for simulating viscoelastic flows at high Weissenberg numbers was presented by King
and Lind [69]. Bhattacharya et al. [8] tackled the tensile instability in SPH for weakly
compressible fluids by devising an adaptive algorithm that employs a B-spline func-
tion as the SPH kernel, showing its efficiency via dispersion analysis of an Oldroyd B
fluid model and benchmark fluid dynamics simulations. Xu and Yu [12] examined the
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problem of tensile instability in SPH when simulating transient viscoelastic free sur-
face flows. They introduced an optimised particle shifting technique and validated its
effectiveness through simulations involving impacting drops, injection moulding, and
extrudate swell, providing comparisons with other numerical methods and techniques.
Zhu et al. [70] in his paper assessed how well the plastic viscosity can be determined
using the SPH approach. Papanastasiou’s [71] Bingham constitutive model was imple-
mented into the SPH model and tested against the results of published data. The study
determined adequacy of the vane rheometer to assess rheological properties. They con-
cluded that higher Bingham number values are responsible for larger sizes of unyielded
materials in the inner blade region. Xu et al. [11] advanced the SPH approach to
3D non-Newtonian flows with complex free-surface shapes. The viscosity is calculated
using the Casson model. Artificial stress-term is inserted into the momentum equation
to prevent tensile instability, which leads to clustering of particles and non-physical
defects in fluid stretching. Three complex engineering processes were simulated as
non-Newtonian free surface flows, including a droplet-impact problem. The shear thin-
ning behavior was found to be visible in all cases and the developed SPH algorithm was
stable, reasonably accurate and consistent with the published results. Xenakis et al.
[65] utilised a diffusion-based ISPH method to analyse free-surface flows, wherer the
method has been developed to tackle inelastic non-Newtonian flows through the imple-
mentation of a novel viscous term. The innovative method was corroborated through
comparison with analytical and experimental findings.

HWNP. The HWNP manifests as an absence of simulation stability, leading to a fast
escalation of the numerical solution [16]. Inhibition transpires when the Weissenberg
number (or Deborah number) attains a critical threshold, which fluctuates based on
factors such as flow complexity, spatial discretization, and numerical methodology. The
loss of positive-definiteness in the conformation tensor, an intrinsic variable that defines
the arrangement of polymer chains, is recognized as a precursor to the HWNP [72].
In addition, Fattal and Kupferman et al. [72, 73] have demonstrated that numerical
instabilities arise from inadequate resolution of spatial stress profiles. This is an issue
because viscoelastic flow solutions generally entail stress boundary layers character-
ized by significant fluctuations in stress gradients and exponential stress profiles near
geometric singularities. Insufficient representation of stress gradients, such as by poly-
nomial interpolations of exponential profiles, leads to an underestimating of convective
stress fluxes. This inaccuracy is subsequently mitigated by doubling the stress increase
rate, ultimately resulting in computational inaccuracies. The log-conformation rep-
resentation [74, 75, 76] preserves positive-definiteness while enhancing the depiction
of notable stress gradients by converting exponential stress profiles into linear forms.
Challenges associated with a high Weissenberg number are critical in viscoelastic flow,
since they pertain to scenarios where elastic forces substantially influence fluid behav-
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ior. This results in complicated phenomena such as coil-stretch transitions and elastic
instabilities, which present problems for precise simulation and practical understanding
in many industrial and research applications. Ensuring numerical stability is crucial
for simulating flows with elevated Weissenberg numbers, as these conditions are espe-
cially prone to error propagation and solution failure [20, 77]. Verbeeten et al. [78]
employed the Discrete Elastic Viscous Stress Splitting Technique alongside the Dis-
continuous Galerkin (DEVSS/DG) method to model a polyethylene melt, emphasizing
the interaction between physical and numerical factors in attaining stable solutions
for intricate flows. In order to try to simulate flows with high Weissenberg numbers,
[72, 77] proposed the log-conformation formulation inside the framework of the FDM,
employing the matrix logarithm of the conformation tensor to enhance stability at
high Weissenberg numbers. This indicates that logarithmic variables mitigate numeri-
cal instability problems, while persistent obstacles pertain to accuracy deterioration at
inadequate resolution. Ke and Wang [79] illustrated that multiple momentum equa-
tion stabilization algorithms markedly improve the stability of the Log-Conformation
Representation method for low viscosity ratio viscoelastic lid-driven cavity flow sim-
ulations, enabling a decrease in the viscosity ratio that can be stably simulated and
requiring shorter time steps relative to the original cases. Comminal et al. [16] in-
tegrated the log-conformation formulation with the streamfunction representation for
incompressible viscoelastic flows. Fernandes [76] presented a block-coupled methodol-
ogy for calculating viscoelastic flows via the log-conformation tensor method, utilizing
implicit discretization for several terms and validating the algorithm for non-isothermal
viscoelastic Oldroyd-B fluid dynamics. Meburger et al. [42] presented a methodology
employing the root conformation technique on unstructured meshes, exhibiting stability
and confirmation with experimental data for elevated Weissenberg numbers and vary-
ing wall temperatures. Fernandes et al. [80] presented an enhanced both-sides diffusion
scheme within a finite volume method framework for simulating viscoelastic fluid flows,
exhibiting precise predictions for benchmark cases and attaining steady-state solutions
with refined meshes and a convergence rate approaching second order. The work of [74]
also enhanced the stability of a FVM viscoelastic solver, demonstrating second-order
accuracy in time and space for low Deborah numbers, while providing new insights
into the vortex dynamics and transient behavior in the 4:1 planar contraction experi-
ment. Giorgi and Morro [81] proposed a framework for modeling viscoelastic materials
through the introduction of constitutive functions derived from measures of strain,
stress, heat flux, and their temporal derivatives. This approach maintains adherence
to the second law of thermodynamics and accommodates a diverse array of models,
including nonlinear thermo-viscoelastic materials exhibiting significant deformations,
thereby encompassing established models. Westervoß et al. [82] introduced the Ten-
sor Diffusion approach for simulating viscoelastic fluids, demonstrating its ability to
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decompose the extra-stress tensor and reduce complex viscoelastic models to a gen-
eralized Stokes-like problem, thereby enhancing numerical behavior and convergence
in various flow configurations. [3] demonstrate that the tensor interpolation method
is identified as the primary cause of the loss of symmetric positive-definite property
in conformation tensors, which exacerbates the high Weissenberg number problem in
viscoelastic fluid flow, and they propose a tensor-based interpolation method that ef-
fectively enhances numerical accuracy and maintains the symmetric positive-definite
property.

Miscellaneous. Other studies have been made investigating turbulence, sediment
transport, etc. Sasmal [83] review the current understanding of electro-elastic insta-
bility and turbulence in electro-osmotic flows of viscoelastic fluids, highlighting the
significant alterations in flow behavior due to viscoelasticity and the necessity for fur-
ther research to explore their practical applications in microscale flow systems. Gupta
and Sasmal [84] conducted extensive numerical simulations to elucidate the complex
relationship between cavity aspect ratio and mixed convective heat transfer, reveal-
ing that the heat transfer rate’s dependency on aspect ratio varies significantly with
Richardson and Prandtl numbers, with notable differences observed between Newto-
nian and viscoelastic fluids under different conditions. Brandi et al. [85] examine
laminar-turbulent transition in viscoelastic fluid flows through Direct Numerical Sim-
ulation (DNS) and Linear Stability Theory (LST), illustrating the impact of polymer
concentration and elastic forces on critical Reynolds numbers, and uncovering alter-
ations in flow structures for particular parameters. Recent research additionally incor-
porate machine learning (ML) methods. For example, the study of Faroughi et al. [54]
presented a machine learning framework utilizing Random Forest, Deep Neural Net-
work, and Extreme Gradient Boosting models to assess the drag coefficient of spherical
particles in a viscoelastic fluid, based on datasets derived from direct numerical simula-
tions (DNSs). Su et al. [86] conducted a numerical study that examined the nonlinear
behavior of electrohydrodynamic flow in viscoelastic fluids, revealing that viscoelastic-
ity induces unique hydrodynamic behaviors and alters the transition to chaos compared
to Newtonian fluids.

1.4 Motivation and open challenges

The study and application of non-Newtonian fluids is a vibrant area of research and de-
velopment. Ongoing advancements are being made in the development of more accurate
constitutive models and CFD techniques to better predict and simulate the complex
flow behavior of these materials, particularly in intricate geometries or under extreme
conditions. Novel applications continue to emerge, driven by progress in materials
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Figure 1.5: Gravitational hopper discharge using spherical particles solved by the DEM.

science and engineering. These include the development of increasingly sophisticated
"smart" materials and structures incorporating responsive fluids. The continued explo-
ration and manipulation of non-Newtonian fluid behavior promise further innovations
and technological advancements across scientific and industrial domains, underscoring
the enduring importance of understanding the complex ways in which matter can flow.

In the pursuit of advancing our comprehension of non-Newtonian flows, this PhD thesis
emphasizes the pivotal role of numerical modeling as a powerful tool for unraveling the
intricate physics governing these complex fluid dynamics. By introducing novelties to
the current computational methods, this research aims to bridge theoretical insights
with practical applications, enabling a deeper understanding of non-Newtonian behav-
iors crucial for optimizing industrial processes and engineering applications. The fol-
lowing sections describe the main motivation and challenges that have been addressed
by the novelties of numerical modelling, that are introduced in this thesis.

1.4.1 Motivational prior research

Prior research, before starting to research the area involved in this thesis, included sim-
ulating the discharge of granular cargo from Trailing-Suction Hopper Dredgers (TSHD)
using the Discrete Element Method (DEM) [87]. This work highlighted the impact of
material dynamics show in Figure 1.5 on the stability of the ship, and underscored
the complexities of modeling even seemingly simple particulate flows. While the DEM
proved as effective tool for simulating granular systems, it also illuminated the compu-
tational challenges and inherent limitations when considering mixture of wet materials
that behave more as a continuous medium. It has come to the conclusion that the
simulated substances in [87] actually exhibit complex non-Newtonian flow behaviors
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(viscoplasticity and viscoelasticity), which are better characterized using continuum
mechanics principles. This realization motivated the initiation of the current PhD
research, which shifts focus from discrete particle dynamics to the development and
application of continuum-based numerical methods for simulating these challenging
non-Newtonian flows. Therefore, the resulting goal is to leverage the strengths of
continuum approaches to efficiently and accurately capture the macroscopic flow be-
havior governed by sophisticated constitutive laws, addressing phenomena not readily
captured by particulate methods.

1.4.2 Complex and large deformations

A central challenge in simulating non-Newtonian flows, particularly those involving vis-
coelasticity or viscoplasticity, lies in accurately capturing the material’s deformation.
Unlike simple Newtonian fluids, the stress state in these materials is often intricately
linked not just to the instantaneous rate of strain, but also to the history of deforma-
tion and the magnitude of accumulated strain. Phenomena such as stress relaxation,
creep, yielding, and large elastic recoveries are direct consequences of how the material
deforms over time.

Traditional Eulerian mesh-based methods, such as the FVM or FEM implemented
on a fixed grid, face significant hurdles when dealing with the complex deformations
characteristic of rheological flows. In an Eulerian framework, the fluid moves through a
fixed mesh. Accurately tracking the deformation history of a specific material element
becomes computationally demanding and prone to numerical diffusion. Reconstructing
the history requires complex advection schemes and interpolation, which can smear out
the very memory effects crucial for viscoelastic models, especially when dealing with
sharp stress gradients or complex flow paths. While Eulerian methods avoid the mesh
distortion inherent in Lagrangian mesh-based methods, they struggle with accurately
representing large material stretching, folding, fragmentation, or coalescence, especially
at free surfaces or interfaces. Methods like Volume of Fluid (VOF) or Level-Set are
required to capture the interface, adding complexity and potentially introducing issues
with mass conservation or interface sharpness. Simulating phenomena like die swell,
droplet impact and breakup, or filament stretching becomes significantly complicated.

Due to the memory effects of viscoelastic fluids, Lagrangian perspective is natural [88].
Lagrangian perspective is particularly effective in modelling complex flows, where the
path and interaction of individual fluid elements are of significant interest, such as
in turbulent flows or multi-phase systems. By focusing on the movement and inter-
action of individual parcels, Lagrangian numerical methods may provide a detailed
and dynamic picture of fluid behaviour, revealing insights into the underlying physical
processes and history driving the flow. Consequently, researchers investigated extend-
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ing the most famous meshless method, Smoothed Particle Hydrodynamics (SPH), on
the viscoelastic flows [9]. The exploration and refinement of meshless methods, such
as Lagrangian Differencing Dynamics (LDD) [7], as viable alternatives to traditional
mesh-based approaches is one notable trend in the current literature. Meshless meth-
ods have gained popularity due to their improved ability to handle complex geometries
and dynamic fluid interfaces, providing a promising avenue for simulating viscoelas-
tic flows. Despite these advances, obstacles remain, which are also presented in past
research overview.

Computational efficiency, stability, and the ability to deal with highly nonlinear vis-
coelastic behaviors are still being researched. Furthermore, the field is increasingly
recognizing the importance of benchmark problems and standardized validation pro-
tocols for evaluating the accuracy and reliability of various numerical methods.

1.4.3 Variability of rheological properties

The simulation is further complicated when rheological properties exhibit significant
variability in both space and time. Such variations are common in numerous practical
scenarios, e.g. in polymer processing involving temperature gradients [20]. Accurately
capturing this spatio-temporal dependence within numerical simulations presents dis-
tinct challenges.

From an Eulerian standpoint, handling variable rheological properties necessitates care-
ful consideration. Temporal variations at fixed locations can often be managed directly
within the constitutive model. However, spatial variations, particularly those arising
from the advection of elements with differing properties require the accurate transport
of these scalar or tensorial property fields alongside the primary flow variables. This in-
troduces additional advection equations, which are themselves susceptible to numerical
diffusion.

Similarly to the above, the Lagrangian framework offers inherent advantages in manag-
ing spatio-temporal property variations. Since material properties are directly associ-
ated with and carried by the Lagrangian particles, their advection is implicitly handled
by the particle motion, circumventing the numerical diffusion associated with explic-
itly solving advection equations for property fields on a fixed grid. Temporal evolution
of properties due to intrinsic material kinetics, such as thixotropic structural changes
or temperature-dependent viscosity changes within a material parcel subject to heat
transfer, can often be described by ordinary differential equations (ODE) solved locally
for each particle. Spatial variations in properties across the domain arise naturally from
the initial distribution of particles with different characteristics or from the differing
histories experienced by particles as they traverse the flow field.
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However, the Lagrangian perspective is not without its own set of challenges. While
the advection is simplified, the accurate computation of spatial gradients relies heavily
on the quality of the meshless spatial differentiation operators and the local particle
distribution. Maintaining sufficient particle regularity and accurately approximating
derivatives from potentially irregular point clouds is crucial.

1.4.4 High–Weissenberg number challenges

A high Weissenberg number is a dimensionless number used in rheology to characterize
the relative importance of elastic and viscous effects in a material. It is defined as the
product of the characteristic time scale of deformation (usually relaxation time) and
the characteristic rate of deformation (usually shear rate) in a rheological experiment,
divided by the characteristic size of the system. When the Weissenberg number is high,
it implies that the rate of deformation is much faster than the material’s ability to relax
and adjust to the applied stress. This can lead to several challenges and problems in
simulating rheological behavior.

Complex constitutive models must be adopted at high Weissenberg numbers, the ma-
terial behaves in a highly elastic manner, which means it can store and release large
amounts of energy during deformation. Capturing this behavior accurately requires the
use of complex viscoelastic constitutive models, such as the Oldroyd-B [19], Giesekus
[89], or FENE-P models [51], which involve numerous parameters and equations. These
models may include terms to account for shear-thinning, shear-thickening, and relax-
ation behavior, making simulations mathematically intricate.

In numerical simulations of rheological behavior, it’s common to use finite difference
FDM or finite element methods FEM [41]. When the Weissenberg number is high,
the rapid changes in stress and strain rates can cause instability in the numerical
solution, necessitating careful selection of numerical methods, mesh refinement, and
time-stepping schemes to maintain stability [73]. In other words, the mesh resolution
and time step used in numerical simulations may need to be very small to capture
the rapid changes in stress and deformation. This increases computational demands
substantially. High Weissenberg number regimes also lead to nonlinear rheological
behavior, i.e. nonlinear relationship between stress and strain. Materials may exhibit
strain hardening or softening, non-Newtonian behavior, or even viscoelastic effects that
are challenging to model accurately. The viscoelastic response at high Weissenberg
numbers may exhibit transient effects, including overshoots and undershoots in stress
or strain, which can be difficult to predict and control. In conclusion, these behaviors
are challenging to capture accurately in simulations and consequently, simulating high
Weissenberg number flows requires significant computational resources.
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Finally, it should also be noted that experimental validation of high Weissenberg num-
ber simulations can be challenging because it requires specialized equipment capable
of applying high-frequency or high-strain-rate deformations to viscoelastic materials
[49, 90]. Researchers must address these complexities to accurately model and un-
derstand the behavior of viscoelastic materials under high deformation rates or high-
frequency deformations, which are relevant in various engineering and scientific appli-
cations.

1.4.5 Rationale

The simulation of non-Newtonian fluids, particularly those exhibiting viscoelastic or
viscoplastic behavior, presents substantial computational challenges. As detailed in
previous sections, accurately capturing large material deformations, evolving free sur-
faces, historical memory effects, variable rheological properties, and resolving issues
like the HWNP requires specialized numerical approaches. Traditional mesh-based
Eulerian methods often struggle with convective term complexities and mesh distor-
tion for large deformations, while purely explicit Lagrangian methods can be limited
by restrictive time-step constraints.

This thesis proposes and validates an enhanced Lagrangian Differencing Dynamics
(LDD) method specifically tailored for simulating such complex non-Newtonian flows.
LDD is a meshless, particle-based Lagrangian approach that combines the inherent
advantages of tracking material history and handling large deformations (character-
istic of Lagrangian methods) with the robustness of a semi-implicit solution scheme.
Building upon the foundational LDD framework [91, 4, 7], which utilizes second-order
consistent spatial operators derived from finite differences, a split-step decoupling for
the generalised Navier-Stokes Equations (NSE) is introduced. The main challenges
that remain to be resolved are as follows:

• Pressure and velocity are implicitly calculated in the methods that produce ac-
curate results. The majority of these methods are mesh-based and Eulerian in
nature, but they must deal with frameworks constrained by non-linear convec-
tive terms. Moreover, the CFL number requires good mesh quality and small
time-step values for these methods to remain stable and accurate. The most
well-known mesh methods are FEM and FVM. Besides the CFL and convective
term, other open challenges are related to mesh-deformation issues and interface
advection.

• A Lagrangian description of the flow, on the other hand, is natural description in
which points move with the flow and do not require modeling of the convective
term. These methods can be more efficient and can deal with larger time-step
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values. Although the NSE lack of a convective term makes this type of flow
description appealing to be solved implicitly, most Lagranigan methods are solved
in the explicit manner. A method that efficiently and accurately describes flow
in a Lagrangian manner and implicitly solves velocity and pressure is an open
challenge. The PFEM method combines the Lagrangian and implicit methods
well, but it still relies on the generated mesh. GFDM methods, on the other
hand, can be implemented in the fully Lagrangian context but rely heavily on
operators that are relatively slow.

• Having a Lagrangian method that is fully implicit and mesh-free would be a
significant improvement. In theory, that method should produce accurate results,
and it would be faster than traditional mesh-based Eulerian implicit methods
but slower than Lagrangian explicit methods. At the same time, larger time-
step could be used, resulting in a negligible loss of speed due to implicit solving
pressure and velocity. This type of Lagrangian differencing dynamics could also
be used to solve FSI problems with large deformations of the structure in any
type of flow.

• Non-Newtonian flows with variable viscosity, as well as the governing equations
that describe these multi-character flows, are major issues in industrial processes
that require special attention. Processes that include mixing products with non-
Newtonian character are still unsolved. Since viscosity resists to fluid motion,
the motion created by the mixer impeller leaves portion of a tank unmixed. For
shear-thinning and shear-thikening fluids the apparent viscosity is proportional
to rotational speed. Time-independent fluids are influenced by shear rate applied
to them, while time-dependent fluids change viscosity not only with shear rate,
but also during and after the applied shear stress. The problem arises much more
when mixing process creates non-Newtonian fluid (start with low viscosity and
ends with high viscosity). Powder addition and emulsification can also be an
issue.

Based on this rationale, this thesis introduces two critical, viscoplasticity and viscoelas-
ticity, extensions:

• Generalized non-Newtonian viscosity: the scheme is adapted to solve the gener-
alized NSE, explicitly accounting for variable viscosity dependent on local flow
conditions, crucial for viscoplastic and shear-rate-dependent fluids.

• Viscoelastic modeling: the Oldroyd-B constitutive model, recognized for its abil-
ity to represent fundamental viscoelastic phenomena like stress relaxation and
elastic recovery, is integrated into the LDD framework to simulate viscoelastic
flows. The momentum equation is solved implicitly to robustly handle the cou-
pling between flow and viscoelastic stresses.
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1 Introduction

The objective of the extensions is to develop and demonstrate a more accurate, sta-
ble, and efficient numerical tool for complex rheological simulations. By leveraging the
meshless Lagrangian nature of LDD, this research aims to overcome key limitations
associated with conventional methods, thereby advancing our predictive capabilities.
Such advancements are critical for optimizing industrial processes (e.g., polymer pro-
cessing, mixing), understanding biomedical phenomena (e.g., blood flow), and analyz-
ing geophysical flows, where non-Newtonian behavior is prevalent.

The following benchmarks are used to evaluate LDD’s efficacy in simulating viscoplastic
flows: Square lid cavity flow, Skewed lid-driven cavity flow, Dam break of a Bingham
fluid, and fresh concrete slump. A lid-driven cavity simulates the flow inside a cavity
with lid moving at a constant velocity. It is used to assess how accurately a method
captures the recirculation and shear-thinning behavior of viscoelastic fluids in confined
spaces. The dam break of a Bingham fluid serves as a difficult benchmark because
it describes the abrupt release of a yield-stress fluid and the complex flow behavior
involved. The fresh concrete slump test measures the workability and consistency of
freshly mixed concrete. This test provides critical information about the quality of
the concrete mix, which influences construction practices and ensures that the mate-
rial meets specified standards for optimal performance and durability in a variety of
structural applications.

To assess LDD’s effectiveness in simulating viscoelastic flows, the following benchmarks
are used: Square lid-driven cavity flow, droplet impact, 4:1 sudden contraction, and die
swell in 2D. Droplet Impact simulation shows a droplet colliding with a surface. The
ability of LDD to handle complex fluid interfaces and behaviors during impact, such as
deformation and breakup, is assessed here. 4:1 Sudden contraction tests how well LDD
captures viscoelastic effects such as flow separation, stress relaxation, and flow refor-
mation in geometrically challenging scenarios by simulating fluid flow during a sudden
contraction. Die swell in 2D is the expansion of a viscoelastic fluid when it is extruded
through a small orifice. The ability of LDD to replicate non-Newtonian behaviors,
such as elongational viscosity and elastic effects during flow extension, can be tested
by simulating die swell in a 2D environment. The benchmarks help to evaluate LDD’s
performance in accurately modeling viscoelastic behaviors in a variety of flow scenarios,
including confined spaces, complex geometries, and transient events like impact and
flow deformation. LDD’s effectiveness is determined by its ability to predict flow pat-
terns, viscoelastic effects, and complex fluid dynamics that correspond to experimental
observations or established theoretical expectations for these benchmarks.

The remainder of the thesis is structured as follows. Chapter 2 of this thesis provides
a basic overview of non-Newtonian fluids, categorising them into time-independent,
time-dependent, and viscoelastic types, while also addressing their unique rheological
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features and practical applications. Chapter 3 delineates the mathematical modelling
framework, specifying stress, strain, constitutive laws for fluids, and the encapsulation
of all pertinent components within the Navier–Stokes equations. Chapter 4 provides
a comprehensive survey of many mathematical models employed to characterise the
behaviour of both time-independent and time-dependent non-Newtonian fluids. Chap-
ter 5 clarifies the numerical technique of the Lagrangian Differencing Dynamics (LDD)
method, encompassing the splitting scheme in Lagrangian context for pressure and
velocity, Lagrangian differencing for spatial operators, and the solution of the pressure
and velocity equations within this framework. Chapter 6 delineates the verification
and validation of the proposed LDD approach by juxtaposing it with experimental and
numerical benchmark data for both non-Newtonian viscoplastic and viscoelastic flows.
Chapter 7 concludes by summarising the principal findings, emphasising the efficacy of
the LDD approach in modelling intricate fluid flows, and lists some prospective ideas
to augment its capabilities and investigate novel applications.
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2 Non-Newtonian fluids

Non-Newtonian fluids play an important role in both industrial and natural processes.
Product performance during the manufacturing process has an impact on multiple
industries. Examples include paint in the chemical processing industry, plastics in the
plastics processing industry, slurries and muds in the mining industry, blood, lymph
fluid, and cell fluid in biomedical flows, and milk, chocolate, and edible oil in the food
industry. Non-Newtonian fluids frequently exhibit viscous properties, and it is critical
for the designer or engineer to understand the flow behavior of such fluids in order to
identify the fluid’s physical properties and use these properties to predict flow behavior
in industrial processes. As a result, rheological testing and investigation incorporate
simulation-based flow studies.

Figure 2.1: Non-Newtonian fluid classification and rheological models.
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2 Non-Newtonian fluids

Non-Newtonian fluids are those whose viscosity varies with strain rate, indicating that
the viscous stress within the fluid is not linear. The viscous stress tensor and shear rate
fluctuate during the flow process. Non-Newtonian fluids move in more complex ways
and have different flow characteristics than Newtonian fluids do. The microstructure
formed in these fluids is complex, and thus must be studied and described. Non-
Newtonian fluids’ behavior can be described by relating stress to strain rate. They
are divided into various groups and subgroups based on their physical characteristics.
Non-Newtonian fluids are classified into three categories: time independent fluids, time
dependent fluids, and viscoelastic fluids, as illustrated in Figure 2.1. Some are very
different; for example, shear-thinning viscosity can be reduced through mechanical
agitation, such as stirring or shaking. These include ketchup, yogurt, and acrylic
paints. There are also thixotropic fluids, which means that the relative velocity between
fluid layers reduces viscosity. Other materials show the opposite behavior, known
as rheopecty, in which viscosity rises due to relative fluid movement. They are also
referred to as shear-thickening or dilatant fluids. Considering that, the behavior of
foods, beverages, paints, and medications during processing must be considered. Non-
Newtonian fluids are used in food processing because their properties can affect the
texture, flavor, and appearance of the product. Therefore, maintaining delicate cell
structure is critical in the food, paint, and pharmaceutical industries.

Figure 2.2: Representation of a non-Newtonian fluid moving around an impeller. Red
dots represent the stagnant fluid area around the cavern. The size of the
cavern is determined by the impeller type and torque.

Because the behavior of foods, beverages, paints, and medications during processing
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is important to consider, maintaining delicate cell structure is critical in the food
industry, as well as the paint and pharmaceutical industries, among others. Viscosity
exists in all liquids and soft solids, and because food and medication processing involves
moving goods through systems by applying force to them, viscosity is an important
consideration in the design and operation of such industrial processes. Non-Newtonian
fluids used in food processing can change the texture, flavor, and appearance of the
product. A typical problem for such industries is the mixing problem depicted in Figure
2.2. Shear forces generated by relative motion between fluid layers also have an impact
on system design. The shear force acts in a direction parallel to the pump and tube
surfaces, and resistance to such forces is proportional to the viscosity and smoothness
of the interior pipe surface. The viscosity, pressure, and temperature of the fluid within
the system influence the relative velocity of fluid particles, allowing the fluid or soft
solid to move either faster or slower. When processed, non-Newtonian fluids react to
shear stress and shear rate in a variety of ways. Some thicken, i.e. their viscosity
increases with increasing shear rate (cornstarch water mixture), while others become
less viscous (blood, ketchup, lotions, etc.). Shear-sensitive fluids (shampoo, egg whites,
ketchup) must be handled with care throughout the manufacturing process to ensure
product quality. Because the system has an impact on product integrity, it is critical
to determine pump speed, pressure generated by the pump, flow rates, pipe diameters,
pipe roughness, etc. Maximizing process efficiency involves determining the product’s
shear sensitivity and viscosity. For example, viscosity influences the time it takes to
distribute a product for packing. As a result, a process designed to optimize flow
improves efficiency. The most common problem that viscosity and shear sensitivity
cause in industrial processes is excessive power consumption and the possibility of
product degradation. As a result, rheological testing and investigation involve flow
studies at various pressures and temperatures.

If we assume that the description of structurally simple fluids is Newtonian in all
possible flows, the description of complex fluids is frequently incomplete, with the ex-
ception of relatively limited simple flow kinematics. As a result, many real-world flow
descriptions will be qualitative, if not quantitative. There are several aspects to rheo-
logical measurements and rheological response analysis using material functions in the
process, and the most common modes of rheological observations are associated with
steady state characterization. This includes both steady and oscillatory shear, stress,
relaxation, and creep. All of them are primarily investigated at small deformations and
in the linear viscoelastic range. Deformations can be arbitrarily large in engineering
applications, so understanding how the material microstructure responds to large de-
formations is necessary before claiming to understand the rheological response of these
materials.
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2 Non-Newtonian fluids

2.1 Time–independent fluids

Time independent fluids can be subdivided in two groups:

I. Viscoplastic fluids,

II. Purely viscous fluids,

These two subgroups of time-independent fluids are explained below.

Viscoplastic fluids

Viscoplastic fluids act as solids until the yield value is exceeded, at which point they
begin to flow. The rate of load application determines a viscoplastic fluid’s plastic
deformation. Toothpaste is a type of viscoplastic fluid. When a viscoplastic fluid is
squeezed, the pressure gradient causes the flow. After applying pressure to the tube,
the toothpaste is extruded. The velocity in the center is constant, and the flow is plug-
like. Several constitutive models have been developed to characterize the behavior of
viscoplastic fluids, each offering varying levels of complexity and accuracy:

• Perfectly viscoplastic solid (North-Hoff model), is an idealized model assumes a
rigid material that abruptly transitions to plastic flow once the yield stress is
reached, without any elastic deformation prior to yielding.

• Elastic perfectly viscoplastic solid (Bingham-Norton model) is a widely used vis-
coplastic model, incorporates a linear relationship between shear stress and shear
rate after the yield stress has been exceeded.

• Elastoviscoplastic hardening solid models are widely used to incorporate a linear
relationship between shear stress and shear rate after the yield stress has been
exceeded.

Bingham fluids are particulary important class of viscoplastic fluids, due to its preva-
lence in numerous numerical applications. Bingham material modeling is important
in industry because many materials behave like Bingham fluids (e.g., mayonnaise,
ketchup, pastes, slurries, toothpaste, foams, oils, ceramics, emulsions, fresh concrete,
etc.) [92]. Bingham fluids exhibit a linear behavior, constant viscosity, and constant
yield stress. When the Bingham model begins to flow, it behaves as a Newtonian fluid.
The Bingham model is used in mud flow calculations for drilling engineering because
it only has two parameters: yield stress and plastic viscosity. Inter-particle bonding
in the fluid must be broken during drilling by exceeding a specific shear stress limit.
Until then, the fluid will be resistant to flow. Once the fluid begins to flow, shear stress
and shear rate follow a linear relationship. This helps the drilling fluid suspend solids
and cuttings in the fluid when circulation stops. This model is widely used because it
is simple and can estimate pressure loss in turbulent flow.
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The broader theory of viscoplasticity finds applications in diverse fields, including the
estimation of permanent deformations, prediction of structural failure, stability anal-
ysis, automobile crash simulations, and the design of high-temperature systems (e.g.,
turbines and engines) and systems subjected to high strain rates.

Purely viscous fluids

Purely viscous fluids, a subset of time-independent non-Newtonian fluids, are char-
acterized by a viscosity that is solely a function of the instantaneous shear rate. In
contrast to Newtonian fluids, they lack a linear relationship between shear stress and
shear rate. These purely viscous fluids are broadly categorized into two types

• Shear-thinning (pseudoplastic) fluids exhibit a decrease in apparent viscosity with
increasing shear rate. The underlying mechanism is often attributed to mi-
crostructural changes within the fluid under shear. This behavior is commonly
observed in a wide range of materials, including ketchup, mayonnaise, whipped
cream, biological fluids (e.g., blood), quicksand, nail polish, modern paints, and
most polymer solutions and melts. For example, whipped cream demonstrates
this behavior, because at high flow rates, its low viscosity allows for smooth ex-
trusion from a piping bag, while its increased firmness (due to higher viscosity at
lower shear rates) allows it to retain its shape when dispensed. In polymer solu-
tions or melts, randomly oriented and entangled polymer chains align themselves
in the direction of flow at higher shear rates, reducing intermolecular interactions
and flow resistance.

• Shear-thickening (dilatant) fluids exhibit an increase in apparent viscosity with
increasing shear rate, representing the inverse behavior to shear-thinning flu-
ids. This behavior is less common than shear thinning but is characteristic of
concentrated suspensions. These fluids possess the unique ability to transition
rapidly from a liquid-like to a solid-like state under sufficient applied load. At
low shear rates, particles can move past each other relatively easily, lubricated
by the surrounding fluid. At higher shear rates, the particles may be forced into
closer contact or form transient jammed structures (hydroclusters), increasing
resistance to flow. A mixture of water and sand provides a relevant example.
Standing on wet sand causes legs to sink due to its lower viscosity under low
shear, while running across it rapidly increases viscosity, creating a more solid-
like mixture. A classic demonstration of this phenomenon involves a 2:1 solution
of cornstarch in water. At low shear rates, the mixture appears liquid. Stirring
it vigorously increases its resistance, while subjecting it to a sudden impact (e.g.,
throwing a heavy object) can cause it to solidify momentarily, causing the object
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to bounce. Upon cessation of the applied stress, the material reverts to its liquid
state.

A notable application of shear-thinning fluids is in architectural paints. These paints
are designed to spread easily and evenly when applied with a brush or roller (high
shear rate), but to resist dripping and sagging on the wall (low shear rate). This
combination of properties is achieved by formulating the paint with shear-thinning
additives. On the other hand, a notable application of shear-thickening fluids is in body
armor. Traditional Kevlar-based body armor, while offering protection, is often stiff,
heavy, and provides limited protection to extremities. Shear-thickening fluids, when
impregnated into Kevlar fabric, provide enhanced flexibility and impact resistance. For
instance, silica nanoparticles suspended in ethylene glycol create a flexible material
under normal conditions, but rapidly stiffen upon impact, offering improved protection
compared to conventional Kevlar alone.

2.2 Time–dependent fluids

Time-dependent fluids are a class of non-Newtonian fluids whose viscosity is not only
dependent on the instantaneous shear rate, but also on the duration and history of
applied shear stress. They are generally divided into two categories:

• Thixotropic fluids, which exhibit a time-dependent decrease in viscosity under
constant shear stress or rate. This means that the longer the shear is applied,
the lower the viscosity becomes. This behavior could be described as "shear-
thinning over time," and is attributed to the gradual breakdown of the fluid’s
internal structure under shear. Upon cessation of shear, these fluids require
a finite time period to gradually recover their original, higher viscosity as the
internal structure slowly reforms. The duration of this recovery time varies be-
tween fluids and is associated with the time required for structural rebuilding.
While many thixotropic fluids are also shear-thinning, the defining characteristic
of thixotropy is this time-dependent nature of the viscosity change and recov-
ery. When subjected to cyclic shear rate variations, this time lag in structural
response often manifests as a hysteresis loop in the shear stress versus shear rate
plot. Common examples include yogurt, ketchup, peanut butter, many paints,
printing inks, some drilling muds, cement slurries, greases, gels, and biological
fluids like cytoplasm.

• Rheopectic fluids, which exhibit a time-dependent increase in viscosity under con-
stant shear stress or rate, in contrast to thixotropic fluids. Their viscosity in-
creases as a function of both the magnitude and duration of the applied shear.
This "shear-thickening over time" is a less common phenomenon than thixotropy,
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and rheopectic materials can sometimes be mistaken for shear-thickening fluids.
It is important to distinguish it from shear-thickening behavior: shear-thickening
is solely dependent on the magnitude of stress, while rheopexy depends on both
magnitude and duration. A common example is gypsum paste, which exhibits
rheopexy. This paste becomes stiffer only after prolonged beating or mixing.

In summary, thixotropy arises from the duration necessary for particles or structured
solutes to arrange themselves systematically. Anti-thixotropic or rheopectic fluids ex-
hibit an increase in viscosity when exposed to stress over a prolonged duration. These
phenomena get limited research focus due to their rarity in nature and industrial ap-
plications. Thixotropic viscoplastic (TVP) or ideal thixotropic models can be charac-
terised by straightforward rate-controlled, rate-, and stress-controlled frameworks. The
models characterised by multiple structural parameters encompass the multi-lambda
ML-IKH, ML, IKH-V, MDT, and TEVP models. Thixotropic fluids are present in
a variety of substances, including food items like ketchup and yoghurt, as well as in
clay, cytoplasm, and ground substance within the human body. Additionally, they are
utilised in drilling fluids, grease, printing ink, margarine, and polymer melt. Conse-
quently, they are extensively utilised in the chemical and food sectors. Thixotropic
fluids hold significant relevance in the fields of structural and geotechnical engineering,
and they are the subject of extensive research efforts. In comparison to thixotropic
fluids, rheopectic fluids are notably uncommon. Quicksand exhibits characteristics
akin to a thixotropic fluid in its shear-thinning state. Initially it behaves as solid, and
upon application of force it transitions to a more viscous state, causing objects that
exert stress to sink at an accelerated rate. Gypsum paste, akin to cream, demonstrates
rheopecty as it hardens solely after extended agitation. Thixotropy is linked to spe-
cific rheological phenomena, such as yielding, hysteresis during shear-rate ramps, the
influence of rest time, and viscosity bifurcation.

2.3 Viscoelastic fluids

Viscoelastic fluids exhibit intricate, nonlinear flow characteristics resulting from the
interaction of viscous and elastic properties. These fluids are frequently observed in
various scientific and engineering applications, such as polymer melts, petroleum prod-
ucts, and biological systems like blood. Moreover, viscoelastic materials, including
molten glass, metals, rubbers, and synthetic polymers, are thoroughly researched and
employed in a wide range of industrial applications.

Understanding the rheological behaviour of viscoelastic fluids is a considerable problem
due to the overlapping occurrence of viscous dissipation and elastic energy storage,
intensified by highly nonlinear viscous and elastic characteristics. The interplay of
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these constituent elements produces many macroscopic rheological behaviours that
may change over time or under applied stress, including elastic-plastic transition, shear
thinning, shear thickening, and thixotropy.

Viscoelastic fluids exhibit a duality in their nature, behaving as both solids and liquids.
Upon the application of stress, a viscoelastic material can undergo either elastic de-
formation, plastic deformation, or a combination of both (analogous to pizza dough).
When the applied stress remains below the material’s yield stress, the deformation is
primarily elastic. Conversely, exceeding the yield stress allows for both elastic and plas-
tic deformations to occur, potentially resulting in a linear or non-linear stress-strain
relationship. Upon the removal of stress, the elastic deformation is recovered, while
the plastic deformation remains permanent. If a viscoelastic material is subjected to
constant stress, it will exhibit continuous deformation if fluid-like, or deform asymp-
totically towards a limit if solid-like. The continued deformation under constant stress
is known as creep. Conversely, if a viscoelastic material is rapidly deformed and then
maintained in a fixed deformed state, the stresses within may remain constant (if elas-
tic) or decrease over time (if fluid-like), ultimately reaching either an isotropic state
of stress or an asymptotic limit. This time-dependent stress reduction under constant
strain is termed stress relaxation. While previous deformation experiences influence
the stresses in both viscoelastic and thixotropic fluids, viscoelastic fluids are uniquely
defined by their elasticity, whereas thixotropic fluids are distinguished by the time de-
pendence of their viscosity or yield stress. Creep and stress relaxation are characterized
as viscoelastic phenomena because they stem from the material’s response to internal
friction and viscous effects. The viscoelastic properties of a material lead to damping
and energy dissipation under dynamic loading, resulting in a hysteresis loop in the
stress-strain relationship. The area within this hysteresis loop represents the energy
dissipated during the loading cycle. Likewise, the propagation of sound in liquids and
gases reflects an elastic response. Fluids, in general, exhibit both viscous and elas-
tic character, and their resulting behavior is deemed viscoelastic. Typically, however,
elastic deformations are of a significantly smaller order than the viscous deformations.

Constitutive models that quantitatively characterise viscoelastic fluid behaviour are
typically expressed either by differential equations or integral representations. These
models are frequently articulated through mechanical analogies. The Maxwell model,
Kelvin-Voigt model, standard linear solid model, and Burgers model depict linear vis-
coelastic models employed for predicting material behaviour under diverse stress cir-
cumstances. Linear viscoelasticity is based on linear response theory, which presumes
linearity within the system. This does not suggest a linear correlation among individ-
ual variables; more importantly, it indicates governing equations that linearly associate
stress and strain, comprising algebraic, differential, and integral forms, or their combi-
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nations.

Nonlinear constitutive models for viscoelasticity encompass the second-order fluid the-
ory, the upper-convected Maxwell theory, the Oldroyd-B theory, the Wagner model,
and Prony series. These models may represent more intricate phenomena displayed
by fluids, encompassing time-dependent behaviour and nonlinear correlations between
stress and strain.

2.4 Magnetorheological Fluids

Magnetorheological (MR) fluids [93] constitute a significant category of functional
or "smart" materials, distinguished by rheological properties that can be precisely,
rapidly, and reversibly controlled via an external magnetic field. Fundamentally, they
are suspensions composed of micron-sized, magnetically permeable particles (typically
carbonyl iron powder) dispersed within a non-magnetic carrier liquid, such as mineral,
synthetic, or silicone oil [94]. Additives are commonly incorporated to enhance sedimen-
tation stability, reduce abrasive wear, and prevent irreversible particle agglomeration.
In the quiescent state, absent an applied magnetic field, MR fluids generally exhibit low
viscosity, behaving much like their base carrier fluid. However, upon the application of
a magnetic field, the suspended particles acquire magnetic dipole moments and rapidly
align themselves, forming fibrous or columnar structures oriented parallel to the mag-
netic flux lines. These particle structures span the gap containing the fluid, significantly
increasing the resistance to flow or deformation, particularly perpendicular to the field
direction [95]. This phenomenon results in a dramatic and near-instantaneous transi-
tion (occurring within milliseconds) from a relatively low-viscosity, liquid-like state to
a semi-solid state. Critically, this transition is characterized by the development of a
substantial yield stress, causing the fluid to behave as a viscoplastic material (often
approximated by Bingham or Herschel-Bulkley models) while the field is active. The
magnitude of this yield stress, and consequently the static and dynamic resistance of
the fluid, can be continuously and precisely modulated by adjusting the strength of
the applied magnetic field. This field-induced change is fully reversible, with the fluid
returning to its low-viscosity state almost immediately upon removal of the magnetic
field.

2.5 Applications of non-Newtonian rheology

The departure of non-Newtonian fluids from the simplicity of Newtonian behavior
grants them a significant presence across a diverse tapestry of natural phenomena and
industrial processes. The interplay between shear stress and viscosity, deviating from
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the linear norm, manifests in many essential applications where controlled flow and
deformation are highly necessary. In this section, previosuly mentioned applications
that depend on non-Newtonian fluids, are described.

2.5.1 Coatings and paints

Paints and coatings exemplify the intentional engineering of rheology for enhance of
performance [96]. The main requirements appear contradictory: the coating should flow
easily during application (e.g., brushing, rolling, or spraying) for smooth coverage and
good surface wetting, but it must also resist dripping or sagging right after application,
particularly on vertical surfaces. Additionally, paints require adequate storage stability
to avoid the settling of pigments and fillers over time. These functions are mainly
realised through shear-thinning behaviour, often alongside thixotropy [97]. The process
generates high–shear rates from the brush or roller, leading to a reduction in paint
viscosity. The thinning effect results from the breakdown of temporary structures in
the paint (polymer chains and pigment agglomerates). Upon removal of the shear force,
the internal structure reforms, leading to a rapid increase in viscosity to inhibit sagging
and dripping. Thixotropy enables a time-dependent recovery of viscosity, facilitating
initial flow and levelling before viscosity increases. The rheological profile of paint
is controlled by additives or modifiers for balancing ease of application, film build,
stability, and resistance to defects such as sagging and spattering.

2.5.2 Civil engineering

Fresh concrete, a blend of cement, water, aggregates, and sometimes chemical admix-
tures, requires specific rheological properties for effective construction [98]. Key perfor-
mance attributes include workability, which refers to the ease of mixing, transporting,
placing into formwork, consolidating, and finishing concrete. Stability is crucial, as
it denotes the concrete’s capacity to maintain homogeneity and resist segregation of
coarse aggregates and bleeding of water during handling and after placement while still
plastic. Inadequate rheology may result in defects such as honeycombing, voids, and
weak interfaces, undermining the strength, durability, and quality of hardened concrete
[99]. Fresh concrete exhibits complex flow behaviour as it consists of a dense particle
suspension with a broad size distribution within a fluid matrix (cement paste). Its
rheology is often approximated by the Bingham plastic model. A sufficient yield stress
stops settling under gravity and aids in preserving the shape post-placement. Plastic
viscosity determines flow resistance after surpassing yield stress. It affects the flow of
concrete during placement, its capacity to fill formwork, and the ease of surface finish-
ing. Lower plastic viscosity typically facilitates flow and decreases pumping pressure;
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however, excessively low levels may worsen segregation. High plastic viscosity compli-
cates placement and consolidation, potentially trapping air bubbles and impacting final
quality. Thixotropy impacts concrete behaviour by influencing workability retention
and structural development at rest. Controlling yield stress and plastic viscosity via
mix design, such as adjusting water-cement ratios, aggregate grading, and chemical
admixtures, is crucial for balancing flowability and stability.

2.5.3 Food processing and presonal-care products

Controlling rheological properties is crucial for effective food manufacturing and de-
velopment of presonal-care products. Food products are complex mixtures (suspen-
sions, emulsions, and solutions of large molecules like proteins and polysaccharides).
Shampoos, conditioners, body washes, lotions, and creams are typically shear-thinning
(pseudoplastic). Shear forces, such as pumping and mixing, reduce the viscosity of
sauces, dressings, purees, and products like ketchup, aiding in processing and dispens-
ing. They regain higher viscosity at rest, ensuring thickness and preventing sedimen-
tation or phase separation during storage. Yield stress, found in Bingham plastics
and Herschel-Bulkley fluids, is crucial for products requiring shape retention, including
frostings, mayonnaise, certain cheeses, and thick pastes [100]. The yield stress inhibits
flow under gravity, enabling products to retain texture and structure, such as main-
taining peaks on a cake or remaining in place when spread. Thixotropic agents form
a weak gel at rest, stabilising the product while easily breaking down when stirred or
consumed, enhancing mouthfeel. Viscoelasticity also significantly influences creami-
ness, springiness, and chewiness in various products, including dairy, sauces, doughs,
and gels [101]. Processing operations (pumping, mixing, extrusion, and filling) are
significantly affected by the non-Newtonian rheology. Non-thermal processing tech-
nologies, such as high-pressure processing and pulsed electric fields, aim to maintain
the nutritional, sensory, and rheological properties of heat-sensitive food materials that
are often changed by traditional thermal methods.

2.5.4 Drilling and extraction

Drilling fluids serve essential roles in the oil and gas industry during well drilling. These
tasks involve transporting rock cuttings from the drill bit to the surface, lubricating
and cooling the drill bit and string, maintaining hydrostatic pressure to prevent for-
mation fluid influx, stabilising the wellbore, and minimising fluid loss into permeable
formations. Drilling fluids are designed to show Bingham plastic (or Herschel-Bulkley)
properties, along with shear-thinning and thixotropic traits. When fluid circulation
halts temporarily, the fluid must suspend cuttings to prevent settling at the wellbore’s
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bottom, which may lead to issues such as pipe sticking. The yield stress allows the
fluid to act as a weak solid under the low gravitational stress on the cuttings when
static. Shear-thinning behaviour is crucial for effective circulation. Fluid in the drill
pipe and annulus undergoes moderate to high shear rates during pumping and flow.
The capacity to thin in these conditions decreases pumping pressure, reduces energy
use, and lessens equipment wear. Lower viscosity at elevated shear rates enhances hole
cleaning by enabling turbulent flow regimes that effectively lift cuttings. When left
static, the fluid develops a gel structure over time, improving its capacity to suspend
cuttings and weighting materials. The gel structure must quickly disintegrate upon the
resumption of circulation, facilitating fluid flow. This behaviour over time is typical of
thixotropy. Characterising and modelling drilling fluid rheology with models such as
Bingham plastic, Power Law, or Herschel-Bulkley is essential for predicting hydraulic
performance, optimising cuttings transport, calculating pressure losses, and managing
filter cake formation in permeable formations. The rheological properties depend on
downhole conditions, as temperature and pressure can significantly affect viscosity and
yield stress, along with contamination from drilled solids or formation fluids, neces-
sitating careful monitoring and maintenance of the mud system. The interaction of
yield stress, shear thinning, and thixotropy, adapted to drilling conditions, highlights
the importance of non-Newtonian fluid mechanics in effective and economical drilling.

2.5.5 Additive manufacturing

Additive Manufacturing (AM), commonly known as 3D printing, inherently involves the
controlled deposition and subsequent solidification or curing of materials. 3D printing
processes have been optimized and new materials are being explored for extrusion-based
processes [102]. Understanding the rheology and impact on the entire process is crucial
for improving printing quality. In general, the material’s rheological profile must satisfy
a set of criteria simultaneously [103]. Shear-thinning behavior, for example, allows
materials to be easily forced through fine print nozzles (experiencing high shear) while
possessing sufficient viscosity at rest (low shear) to maintain the deposited shape and
prevent sagging or spreading [104, 105]. The optimization of printing speed, extrusion
temperature, and nozzle design leads to improved manufacturing efficiency, reduced
material waste, minimization of print defects, and superior mechanical and functional
properties in the final parts [106]. Hydrogels, which are three-dimensional networks
of hydrophilic polymers capable of retaining large quantities of water, are extensively
utilized in bioprinting due to their inherent biocompatibility, tunable properties, and
ability to mimic the native extracellular matrix (ECM) of tissues [104, 107]. Direct
Ink Writing (DIW), also known as Robocasting, is a prominent extrusion-based AM
technique specifically adapted for fabricating dense or porous ceramic components with
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complex three-dimensional architectures [108]. Polymer composite inks for AM involve
the dispersion of functional filler particles within a polymer matrix. These inks are
designed to combine the processability of polymers with the specific functionalities
imparted by the fillers, such as enhanced mechanical strength, electrical conductivity,
bioactivity, or thermal properties [103, 92]. 3D Food Printing (3DFP) is an emerging
application of AM that offers the potential for personalized nutrition, the creation
of intricate food designs, and the innovative use of alternative protein sources and
food industry by-products. Extrusion-based printing is the most common modality for
3DFP, utilizing a wide variety of edible pastes and hydrocolloid-based formulations.

2.5.6 Biological Systems

The complex composition of biological fluids often leads to non-linear rheological be-
havior that is essential for physiological processes. Blood, a suspension of red blood
cells, white blood cells, and platelets in plasma (which itself contains proteins and
other macromolecules), is a quintessential example of a non-Newtonian fluid in bi-
ology and hemorheology. Its most prominent non-Newtonian characteristic is shear
thinning of blood, which is advantageous for efficient circulation. Blood also exhibits
viscoelastic and thixotropic properties, particularly related to red-blood-cells deforma-
tion and aggregation/disaggregation dynamics [109, 110, 111, 112, 113]. Synovial fluid
is the viscous fluid found within the cavities of synovial joints, and its lubricating and
shock-absorbing stem from complex rheology, primarily its viscoelasticity [101]. In
degenerative joint diseases, altered rheological properties (reduced viscosity and elas-
ticity) impair the fluid’s lubricating and shock-absorbing capabilities contributing to
joint pain, stiffness, and further cartilage degradation [114], so gels may be injected
into the joint cavity to restore the viscoelastic properties of the synovial fluid.

2.5.7 Other applications

Shear thickening fluids enhance protective materials, especially flexible body armour.
The core concept is based on the fluid’s dilatant property, which allows it to quickly
shift from a low-viscosity liquid to a high-viscosity, near-solid state under sudden, high-
shear-rate impact [115]. Under typical conditions or low-speed movements, the armour
retains its fluidity, enabling it to be flexible and comfortable. In milliseconds, it so-
lidiffies locally, and the hardened fluid boosts the stiffness and energy absorption of
Kevlar fabric, improving penetration resistance and distributing impact energy over
a wider area. Non-Newtonian fluids provide innovative mechanisms for damping un-
wanted vibrations in mechanical systems, over traditional viscous dampers. Both shear
thickening and magnetorheological fluids are actively explored [100]. Fluds are used in
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damping systems due to their ability to increase resistance under dynamic loading. Re-
cent theoretical and experimental work has also investigated the use of non-Newtonian
fluids sandwiched between layers in flexible laminates for impact protection, relevant
to applications like smartphone display glass [116]. MR fluids stand out as highly
versatile "smart" materials, enabling the development of adaptive mechanical systems
where performance can be actively controlled in real-time [117]. One of the most suc-
cessful application areas for MR fluids is in semi-active dampers [118], as they offer the
reliability of passive systems combined with the adaptability approaching that of fully
active systems. MR fluids can also be used to create controllable clutches and brakes,
typically operating in shear mode [118].
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This chapter outlines the theoretical foundation for simulating the behavior of fluids
as both solid and fluid materials, emphasizing the role of constitutive laws in capturing
material responses under various conditions. While the core focus of this thesis lies in
the numerical modelling of governing equations for non-Newtonian fluids, it is crucial
to first distinguish solid and fluid behavior, as well as characterize materials exhibiting
properties of both.

3.1 Introduction on modelling

The simulation of fluid dynamics relies on establishing a mathematical framework
through constitutive equations, which accurately relate stress, strain rate, and time.
These equations, that are underpinned by the fundamental principles of continuum
mechanics, provide a means of predicting fluid behavior under varying conditions. So-
phisticated numerical simulations, built upon these constitutive relationships, allow
for detailed insight into intricate flow phenomena, which informs the design and op-
timization of efficient engineering systems. The selection of appropriate constitutive
equations requires careful consideration, as no single model can universally describe
the behavior of all fluids across all flow regimes. Each constitutive model possesses a
limited range of applicability, accurately capturing the essential features of a specific
flow field.

Continuum mechanics provides a theoretical foundation for analyzing matter regard-
less of its phase or structure. Material constitutive equations are, therefore, used to
characterize the macroscopic properties of solids, liquids, and gases. These constitutive
equations serve as macromechanical models, representing real-world material behavior
at a scale significantly larger than individual atoms or molecules. A classic example is
Hooke’s law, which provides a foundational constitutive relationship for elastic solids,
linearly relating stress and strain. The continuity assumption, a cornerstone of contin-
uum mechanics, idealizes fluids as continuous media, even though they are composed
of discrete molecules. This assumption allows for the description of fluid properties,
representing average values of molecular characteristics, as continuously varying from
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Figure 3.1: Terminology connecting classifications within continuum mechanics and
rheology.

point to point within the fluid. This simplification enables the effective use of differ-
ential calculus to model fluid behavior. Specifically, the continuum assumption states
that macroscopic properties such as density, pressure, temperature, and velocity can
be accurately characterized within infinitesimal control volumes.

The diagram shown in Figure 3.1 illustrates the hierarchical structure of the relevant
terminology, beginning with its broad definition as the study of the physics of con-
tinuous materials. Continuum mechanics branches into solid mechanics, focusing on
materials with a defined rest form, and fluid mechanics, which concerns materials that
deform under applied force. Solid mechanics further divides into elasticity, where ma-
terials return to their original form after stress removal, and plasticity, where materials
undergo permanent deformation under sufficient stress. Plastic deformation is defined
as irreversible deformation under sustained stress, and creep is characterized by time-
dependent deformation under constant stress. As an example among many others,
steel under elevated temperatures (above 400 ◦C) can undergo creep, while geologi-
cal processes can induce substantial deformation in rocks like granite over extended
timescales. Fluid mechanics then becomes the study of the mechanical properties ex-
hibited by continuous flow. It encompasses both Newtonian fluids, characterized by
a linear relationship between strain rate and applied shear stress, and non-Newtonian
fluids, where this linear relationship does not hold.

Rheology is therefore the base encompassing a broader understanding of material be-
havior, i.e. the study of materials exhibiting both solid and fluid characteristics.
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Figure 3.2: Normal stress definition.

3.2 Stresses in the material

Normal stress

Stress and strain are used to quantify a deformable body’s internal response to external
forces. Consider a uniaxial loading scenario, as depicted in Figure 3.2 , where an
external force is applied along a single axis, resulting in tensile loading. This applied
force induces an internal reaction within the material, resisting the external load and
striving to maintain a state of static equilibrium. The magnitude of the internally
generated resistive force is, by Newton’s third law, equal to the magnitude of the
externally applied force. However, it is more physically informative to consider the
distribution of these internal forces across the material’s cross-sectional area, i.e. the
concept of stress.

Stress represents the intensity of these internal forces acting over an infinitesimal area.
Specifically, the component of internal force acting perpendicularly to a given cross-
section is termed the normal stress typically measured in Pascals, and is defined math-
ematically as:

σ =
Fn

A
, (3.1)

where Fn represents the magnitude of the internal force acting normal to the cross-
section, measured in Newtons (N), and A represents the area of the cross-section per-
pendicular to the applied force, measured in square meters (m2). Normal stress can
be either tensile or compressive in nature. Tensile stress denotes a state of tension,
where the material is being pulled or stretched, resulting in an increase in length along
the loading axis. Conversely, compressive stress corresponds to a state of compression,
where the material is being pushed or shortened, resulting in a decrease in length along
the loading axis.

Strain

Strain is a dimensionless quantity that quantifies the deformation of a material in
response to applied stress. Specifically, normal strain ε describes the change in length
of a body along a particular axis, relative to its original length. For a slender bar
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Figure 3.3: Schematic for defining the normal strain in a console.

Figure 3.4: Shear stress definition.

subjected to uniaxial loading, as illustrated in Figure 3.3, the normal strain ε can be
calculated as:

ε =
∆L

L
, (3.2)

where L represents the original length of the bar before the application of the force,
measured in meters (m), and ∆L represents the change in length of the bar due to the
applied force, also measured in meters (m). Since strain is a ratio of two lengths, it
is dimensionless and often expressed as a decimal or a percentage. Similar to stress,
normal strain can be either tensile or compressive. Tensile strain indicates an elon-
gation (∆L > 0) of the material, while compressive strain indicates a shortening or
compression (∆L < 0) of the material.

Shear stress

Shear stress represents a fundamentally distinct type of stress compared to normal
stress. It arises when a force is applied parallel to a surface or cross-section of a body,
in contrast to the perpendicular application in normal stress. This type of loading
generates internal forces within the material that are parallel to the cross-section,
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Figure 3.5: Infinitesimal stress–element definition in two and three dimensions.

termed shear forces. The shear stress, τ typically measured in Pascals, is quantified as
the force acting tangentially per unit area:

τ =
Ft

A
. (3.3)

where Ft represents the magnitude of the internal force acting tangential to the cross-
section. Figure 3.4 illustrates shear stress acting on an infinitesimal element within a
deformable body. For this element to remain in static equilibrium, shear stresses must
act on opposing faces with equal magnitude but opposite direction. Furthermore, to
ensure rotational equilibrium, two additional shear stresses of equal magnitude τ are
induced on the remaining two faces, defining a state of pure shear.

Shear strain

The application of shear stress causes a deformation of the material as shown in Figure
3.4, resulting in shear strain. This shear strain γ is defined as the change in angle
within the material, as depicted in Figure 3.4, and is measured in radians. In analogy
with Hooke’s law for normal stress, the shear stress and shear strain are related through
the shear modulus G:

τ = Gγ, (3.4)

where G denotes the shear modulus of the material, representing its resistance to shear
deformation.
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Figure 3.6: Hooke’s law states that the force F necessary to generate an elongation ∆x
in a spring with a mechanical constant k.

Cauchy stress tensor

At any given point within a deformable body, a comprehensive description of the
stress state considers both normal and shear stress components, acting on various
planes passing through that point. The magnitudes of these stress components vary
depending on the orientation of the plane under consideration. Figure 3.5 illustrates
the distribution of stress components on a representative element in both two and three
dimensions. To capture this complete stress state, the Cauchy stress tensor, denoted as
σ, is employed. The stress tensor is a second-order tensor that encapsulates all normal
and shear stress components acting on a material element, providing a coordinate-
independent representation of the stress state. The general form of the Cauchy stress
tensor is given as:

σ =

σx τxy τxz

τyx σy τyz

τzx τzy σz

 ≡

τxx τxy τxz

τyx τyy τyz

τzx τzy τzz

 , (3.5)

where τ with subscripts define both normal and shear stresses, where the subscripts
denote the stress plane.

3.3 Constitutive laws

3.3.1 Linear elasticity

As already noted, constitutive equations are mathematical expressions that describe
the macroscopic mechanical behavior of materials under various external influences:
applied loads, temperature changes, and pore pressure variations. These relationships
are essential for predicting the deformation, stress state, and long-term responses.
The selection of an appropriate constitutive equation is critical and depends on the
material properties, the anticipated strain and stress magnitudes, and the loading rate.
Constitutive models vary in complexity and applicability, ranging from simple linear
elastic models to advanced nonlinear and time-dependent formulations.

Linear elasticity, described by Hooke’s Law, serves as the foundational starting point
for understanding solid mechanics. Linear elasticity represents the simplest consti-
tutive relationship, establishing a linear connection between stress and strain through
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constant coefficients. This relationship is analogous to the behavior of a spring, as illus-
trated in Figure 3.6, where the applied force F is directly proportional to the resulting
displacement ∆x:

F = k∆x, (3.6)

where F is the applied force in Newtons, k is the spring stiffness in N/m, and ∆x is
the displacement in metres. For one-dimensional problems, Hooke’s Law is typically
expressed in terms of stress and strain:

σ = E ε, (3.7)

where ε is the normal strain, and E represents Young’s modulus in Pascals, i.e. the
material property that quantifies stiffness.

While linear elasticity provides a fundamental and often sufficient framework for under-
standing the behavior of many solid materials under small deformations, its assump-
tions impose limitations. Primarily, it assumes a proportional relationship between
stress and strain (i.e. the Hooke’s law) and that the material perfectly returns to its
original shape once the load is removed. Many real materials, especially when sub-
jected to larger strains or specific loading conditions, deviate significantly from this
idealized linear response. The modeling of nonlinear behavior can be approached in
several ways, depending on the source and nature of the nonlinearity.

Even if deformations are geometrically small, the material’s stress–strain curve might
be nonlinear. Instead of a constant elastic modulus (e.g., Young’s modulus, E), the
material exhibits a strain–dependent stiffness. This can be modeled by polynomial,
exponential, or power-law functions to fit experimental stress–strain data. Moreover,
when deformations are large, then small strain assumption (ε << 1) is no longer valid.
Changes in the geometry of the body significantly influence its mechanical response.
Modeling this requires employing more complex strain measure, i.e. nonlinear functions
of the displacement gradients. The equations of equilibrium and compatibility also
become nonlinear due to these finite strain definitions and the need to account for the
deformed configuration of the body (e.g., using Lagrangian formulations).

3.3.2 Equilibrium in general

Within a continuum body that is under static equilibrium, the components of the
Cauchy stress tensor at each material point must satisfy the equilibrium equations,
which are derived from the principle of conservation of linear momentum. This condi-
tion ensures that the net force acting on any infinitesimal volume element within the
body is zero, resulting in no acceleration (ma = 0).
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To express this principle mathematically, consider the force summation on an infinites-
imally small cubic element with its dimensions ∆x, ∆y, and ∆z, as depicted in Figure
3.7. As the dimensions approach zero (∆x → 0, ∆y → 0, ∆z → 0), the stress compo-
nents acting on the element can be approximated using the Taylor–series expansions.
In addition to the surface forces represented by the stress tensor, a body–force term
must be considered. This term accounts for forces acting on the entire volume element,
such as the Earth gravity. By summing up the forces in x direction

∑
Fx = ma = 0

the following expression is obtained:

∑
Fx = (τxx+

∂τxx
∂x

∆x−τxx)∆y∆z+(τyx+
∂τyx
∂y

∆y−τyx)∆x∆z+(τzx+
∂τzx
∂x

∆x−τzx)∆x∆y,

(3.8)∑
Fx = (

∂τxx
∂x

+
∂τyx
∂y

+
∂τzx
∂x

)∆x∆y∆z − bx = 0, (3.9)

Considering that ∆x∆y∆z represents the partial volume of the body:

∆V = ∆x∆y∆z =
m

ρ
,

then the sum of the forces in x direction
∑

Fx = 0 can be expressed as follows:

∑
Fx =

∂τxx
∂x

+
∂τyx
∂y

+
∂τzx
∂x

− bxρ = 0. (3.10)

By summing up all the forces in all directions, i.e.:∑
Fx =

∑
Fy =

∑
Fz = 0,

the general Cauchy’s equilibrium equations are defined, which can be expressed in a
shorter way by using the index notation as follows:

∂τij
∂xj

+ biρ = 0. (3.11)

Finally, the same can be written in the vector form:

∇ · τ + bρ = 0. (3.12)

3.3.3 Stress tensor in fluids

Similar to solids, the concept of stress is crucial for describing the internal forces within
a fluid. When a fluid flows and/or is subjected to external forces, internal stresses
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Figure 3.7: Equilibrium of forces in direction x.

develop. The Cauchy stress tensor provides a complete description of the state of
stress at any point within the fluid. It relates the traction vector (force per unit area)
t acting on an arbitrary internal surface to the orientation of that surface, defined by
its unit normal vector n:

t = τ · n. (3.13)

The relationship holds true for fluids just as it does for solids, but the physical ori-
gins and constitutive relations for the stress tensor components differ. In fluids, it is
conventional and physically insightful to decompose the stress tensor into two parts:

• Isotropic pressure p, which is a scalar that represents the hydrostatic and hydro-
dynamic pressure that acts equally in all directions (normal to any surface), and
is present even in a fluid at rest. By convention, the pressure is taken as positive
in compression.

• Viscous–stress tensor τ , which represents fluid’s internal resistance to deforma-
tion, i.e. the shear stresses and the non-isotropic components of normal stresses.
For a fluid at rest, the viscous stress tensor is zero.

Therefore, the total stress tensor in a fluid σ can be defined:

σ = −pI+ τ , (3.14)

where I is the identity tensor, p is the pressure, and τ is the viscous–stress tensor of
the fluid. In the following sections, it will be described how the viscous–stress tensor
is defined for Newtonian and non-Newtonian fluids, i.e. how complex relationship
between τ and the rate of deformation represents shear-thinning, shear-thickening,
yield stress, and viscoelasticity effects.
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V

S

n

Figure 3.8: An arbitrary fluid volume V enclosed by a surface S that is represented by
its normal vectors, n.

3.3.4 Equilibrium for fluids

In order to give physical meaning to the “divergence of the stress tensor” in equation
(3.12), the forces from the infinitesimal cube element in Figure 3.7 are considered in
the context of the domain that represents an arbitrary volume shown in Figure 3.8. We
consider the forces acting on an arbitrary fluid volume V enclosed by a surface S that
is represented by its normal vectors, n. The net surface force F S acting on this volume
due to the stresses at its boundary is given by the integral of the traction vector over
the surface:

F S =

ˆ
S

t dS =

ˆ
S

(σ · n) dS. (3.15)

The divergence theorem (also known as Gauss’s theorem or Ostrogradsky’s theorem)
provides a fundamental mathematical tool to relate this surface integral to a volume
integral. The theorem states that for a continuously differentiable tensor field σ, the
integral of its normal component over a closed surface S is equal to the integral of its
divergence over the volume V enclosed by S:

ˆ
S

(σ · n) dS =

ˆ
V

(∇ · σ) dV (3.16)

Applying this to the surface–force integral equation (3.15):

F S =

ˆ
V

(∇ · σ) dV. (3.17)

This indicates that the term ∇ ·σ, i.e. “the divergence of the stress tensor”, represents
the net surface force per unit volume acting on the fluid.

By combining the net–surface force per unit volume (3.17) with body forces per unit
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Figure 3.9: Scehamtic for defining the viscosity, show in a simple shear flow.

volume f b (e.g. effect of gravity) and the rate of change of momentum per unit vol-
ume ρDu/Dt, we arrive at Cauchy’s equation of motion for a continuum, which is
fundamental to fluid dynamics:

ρ
Du

Dt
= ∇ · σ + f b.

Substituting the decomposition of stress from equation (3.14), the final equation be-
comes:

ρ
Du

Dt
= −∇p+∇τ + f b·

This equation is the general form of the momentum conservation equation for any
fluid. The specific nature of the fluid is encapsulated in the constitutive equation for
the viscous–stress tensor.

3.4 Shear stress in fluids

For numerical modelling, accurately representing viscous–stress tensor for non-Newtonian
fluids and then solving this system of partial differential equations is the central chal-
lenge. Therefore, in this section the explanation of stress–strain relationship and some
examples useful in describing the non-Newtonian fluids are explained. It is critical to
understand where the viscosity comes from and how the fluid flows.

Viscosity is defined as the resistance to fluid motion (i.e. continuous deformation). The
higher the viscosity of the fluid, the greater its resistance to flow and the more difficult
it is to travel or be transported from one location to another. Honey, for example, is
such a viscous fluid that it sips slowly through a spoon after being removed from the
jar. This is primarily due to the high viscosity, which indicates that there is a lot of
tension in the surface and therefore a lot of forces acting on it. This means that the
molecules move extremely slowly. Water is another example of a low-viscosity fluid
because it flows quickly and smoothly.

Figure 3.9 shows two plates with some sort of fluid filled between them. The bottom
plate is a solid and static base plate, while the top plate is pushed to the right by force
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Figure 3.10: The change in fluid element in short period of time defines shear strain.

F . Fluids of all kinds, liquid or gas, with visible molecules, can be used. The fluid
will not move in unison with the moving plate, molecules in fluids are not as tightly
bound together as in solids. When molecules are moved, they attempt to adhere to the
surfaces. A fundamental principle in fluid mechanics is the no-slip boundary condition,
which states that fluid in immediate contact with a solid surface moves at the same
velocity as the surface. Consequently, the fluid layer in contact with the stationary
lower plate will have zero velocity. As the plate moves, the fluid will be displaced in
infinitesimal layers and at infinitesimal height. The layers closest to the moving surface
will travel much faster than the layers at the bottom. For Newtonian fluids (e.g. water
in a pipe), this results in a parabolic velocity profile. Water near the walls tends to
adhere to the wall, and the highest velocity occurs in the pipe’s center, where there is
the least resistance.

In a more formal sense, viscosity can be defined as a contribution to shear stress. Shear
stress is caused by transverse planes passing each other, like shown in Figure 3.9. Shear
stress at a point on an internal surface within the fluid is defined as the limiting ratio
of an infinitesimal tangential force acting over an infinitesimal area element of that
surface:

τ = lim
∆A→0

∆F

∆A
=

dF

dA
, (3.18)

where dF represents the infinitesimal component of force acting parallel (tangential)
to the surface element, and dA represents the infinitesimal area of that surface element
over which the force dF is distributed.

When shear stress applied to a fluid element causes deformation, as depicted in Figure
3.10, it is characterized by a displacement δx of one layer of fluid relative to an adjacent
layer separated by a distance ∆y. This displacement results in an angular deformation
∆α, which defines the shear strain. For small deformations, which are typically assumed
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in defining the instantaneous rate of strain, the angle ∆α is small, allowing for the
approximation:

∆α ≈ tan (∆α) =
δx

∆y
. (3.19)

The displacement δx is directly related to the difference in velocity ∆u between these
two fluid layers and the time interval ∆t, over which the velocity difference happens.
Specifically, the displacement can be expressed as:

∆u∆t = δx, (3.20)

and by substituting equation (3.19) for δx and rearranging equation (3.20) we get the
following expression for the rate of shear strain:

∆α

∆t
≈ ∆u

∆y
. (3.21)

In the limit as the time interval approaches zero ∆t → 0, this relationship describes
the instantaneous rate of shear strain (or shear–strain rate):

γ̇ =
dα

dt
=

du

dy
. (3.22)

For many common fluids, known as Newtonian fluids, the shear stress is directly pro-
portional to this rate of shear strain. The constant of proportionality is the dynamic
viscosity, µ. This constitutive relationship, defining shear stress for Newtonian fluids,
is given by:

τ = µ
du

dy
= µ γ̇, (3.23)

where letter µ represents the dynamic viscosity and has units of Ns/m2 = Pa s. It’s
important to recognize that this is an empirical constitutive model rather than a funda-
mental law of nature. It accurately describes the behavior of a specific class of fluids,
often termed "simple fluids," which includes common examples like air, water, and
many oils, under many flow conditions. The general functional dependence τ (γ̇) indi-
cates that shear stress is a function of shear rate, which holds true for both Newtonian
and non-Newtonian fluids, though the form of the function differs.

Another important viscous property is the kinematic viscosity, ν. It is defined as the
ratio of the dynamic viscosity ν to the fluid density ρ:

ν =
µ

ρ
, (3.24)

which has units of m2/s. For a Newtonian fluid, a plot of shear stress (τ) against the
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Figure 3.11: The viscosity relationship for a Newtonian fluid.

shear rate (γ̇) yields a straight line passing through the origin, as illustrated in Figure
3.11. The constant slope of this line represents the fluid’s dynamic viscosity, µ. This
linear relationship (3.23) is referred to as Newton’s law of viscosity.

In contrast, when shear stress is plotted against shear rate for non–Newtonian fluids,
the resulting curves are non-linear, indicating that their viscosity is not constant but
rather depends on the shear rate. For non-Newtonian fluids in simple shear flow, the
concept of apparent viscosity is introduced, denoted η (γ̇):

η(γ̇) =
τ

γ̇
. (3.25)

The apparent viscosity of a Newtonian fluid is constant and equal to the fluid’s New-
tonian viscosity, while the apparent viscosity of a non-Newtonian fluid depends on the
shear rate. The SI unit for apparent viscosity is Pa·s. From equation 3.25, the shear
stress is defined as:

τ = η(γ̇) γ̇. (3.26)

Several factors can influence the viscosity (either dynamic or apparent) of a fluid. The
properties that may affect viscosity are:

• Temperature. It has been found empirically that the viscosity tends to fall with
rise of the temperature. For example, for liquids it can be described using An-
drade’s equation as follows:

η = Bec/T , (3.27)

where T is the absolute temperature, and B and c are empirically determined
constants for a given liquid. In the case of the gas state, there is the empirical
Sutherland equation found through experiments:

η =
BT 3/2

T + C
, (3.28)
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where B and c are empirical constants for the specific gas.

• Pressure. For liquids, viscosity generally increases with an increase in pressure,
although the effect is often less pronounced than that of temperature at moderate
pressures. Under extremely high pressures, many liquids can exhibit substantial
increases in viscosity and may even solidify. For gases, viscosity is nearly inde-
pendent of pressure over a wide range, except at very low (rarefied) or extremely
high pressures. The viscosity of an ideal gas is considered to be a function of
temperature only.

• Time of shearing. As explained in Section 3.4, the viscosity of certain fluids can
change over the duration t for which shear is applied, i.e. η (t). These fluids
are classified as thixotropic if their apparent viscosity decreases over time under
constant shear, or rheopectic if it increases over time under constant shear.

3.5 Dimensionless numbers

Dimensionless numbers are invaluable tools in fluid mechanics for characterizing flow
regimes, scaling experimental results, and understanding the relative importance of
various physical phenomena. In the context of non-Newtonian fluids, particularly
viscoelastic materials, Deborah and Weissenberg specific dimensionless numbers are
crucial.

3.5.1 Reynolds number

The Reynolds number (Re) is a fundamental dimensionless parameter in fluid mechan-
ics that quantifies the ratio of inertial forces to viscous forces within a fluid flow. It
is crucial for predicting flow patterns and determining whether a flow will be laminar
(smooth, orderly) or turbulent (chaotic, with eddies and fluctuations). It is generally
defined as:

Re =
ρUL

µ
, (3.29)

where U is a characteristic velocity of the flow (e.g., average velocity in a pipe, free-
stream velocity over an object), and L is a characteristic length scale of the flow
geometry (e.g., pipe diameter, chord length of an airfoil). The interpretation of the
Reynolds number is as follows:

• Low Re (e.g., Re < ∼2000 for pipe flow of Newtonian fluids). Viscous forces
are dominant. The flow is typically laminar, characterized by smooth, parallel
streamlines. Disturbances in the flow are damped out by viscosity.
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• High Re (e.g., Re > ∼4000 for pipe flow of Newtonian fluids). Inertial forces
are dominant. The flow is typically turbulent, characterized by chaotic eddies,
mixing, and significant fluctuations in velocity and pressure.

• Intermediate or transition Re. The flow may exhibit intermittent bursts of tur-
bulence or be in a transitional state between laminar and turbulent.

3.5.2 Deborah number

The Deborah number (De) is a dimensionless parameter used to characterize the "flu-
idity" or "solid-like" nature of a material’s response under specific flow conditions. It
quantifies the ratio of the material’s intrinsic characteristic relaxation time (tc) to the
characteristic time scale of the observation or deformation process (tp):

De =
tc
tp
. (3.30)

where tc represents the relaxation time of the material that quantifies the time required
for the material to adjust or "relax" its internal stresses after a deformation or when
subjected to applied stresses. It reflects the material’s memory of its past deformation
history. tp represents the observation time or the characteristic time scale of the ex-
periment, simulation, or engineering process being considered. The Deborah number
effectively compares how quickly a material can respond to changes relative to how
quickly those changes are being imposed:

• De << 1 (fluid-like behavior). If the Deborah number is small, it implies either
that the material’s relaxation time tc is very short (the material responds almost
instantaneously to changes) or that the observation time tp is very long (the
material has ample time to flow and relax). In this regime, the material behaves
predominantly like a viscous fluid, and energy imparted during deformation is
primarily dissipated as heat.

• De >> 1 (solid-like behavior). If the Deborah number is large, it indicates either
that the material’s relaxation time tc is very long (the material responds very
slowly to changes) or that the observation time tp is very short (the deformation
occurs too rapidly for the material to flow significantly). In this regime, the ma-
terial behaves more like an elastic solid, and energy imparted during deformation
is primarily stored elastically.

3.5.3 Weissenberg number

The Weissenberg number (Wi) is a dimensionless parameter used to characterize vis-
coelastic fluid flows. It quantifies the relative importance of elastic forces to viscous
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forces within the fluid under a given deformation rate. The Weissenberg number is
typically defined as the product of a characteristic relaxation time of the fluid (λ, often
the same or related to tc used in De) and a characteristic shear rate (γ̇) of the flow:

Wi = λγ̇.

Alternatively, it can be conceptualized as the ratio of elastic stresses to viscous stresses:

Wi = G
λ

η
, (3.31)

where G is an elastic modulus. Thus, the Weissenberg number assesses the degree of
elastic response:

• Wi << 1 (viscous-dominated flow). Elastic effects are negligible, and the fluid
behaves primarily like a purely viscous (Newtonian or generalized Newtonian)
fluid.

• Wi >> 1 (elasticity-dominated flow). Elastic effects are significant and can lead
to phenomena not observed in purely viscous flows, such as rod-climbing (the
Weissenberg effect), die swell, and flow instabilities.

3.5.4 Bingham number

The Bingham number (Bn) is a dimensionless parameter specifically used to character-
ize the flow of viscoplastic fluids, such as Bingham plastics or Herschel-Bulkley fluids.
These materials exhibit a yield stress (τy), meaning they behave like a rigid solid below
this stress threshold and flow like a fluid only when the applied stress exceeds it. The
Bingham number quantifies the ratio of the yield stress to viscous stress:

Bn =
τy L

µp U
(3.32)

where τy is the yield stress of the fluid, L is a characteristic length scale (e.g., pipe
diameter, channel height), µp is the plastic viscosity (the constant viscosity exhibited
by a Bingham plastic above its yield stress) and U is a characteristic velocity. The
significance of the Bingham number is:

• Low Bn, viscous forces are dominant compared to the yield stress. The yielded
regions of flow will be extensive, and the unyielded "plug" regions (where the
stress is below τy) will be small or non-existent. The fluid behaves more like a
purely viscous fluid.

• High Bn, the yield stress is dominant. The fluid will resist flow significantly, and
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large unyielded plug regions will exist. Flow may only occur in limited regions
where the local stress exceeds τy, or it may not occur at all if the driving forces
are insufficient to overcome the yield stress globally.

In numerical simulations of viscoplastic flows, the Bingham number helps to character-
ize the problem and is essential for implementing constitutive models that incorporate
yield stress, often requiring specific numerical techniques to handle the discontinuous
nature of the yield stress criterion.

3.6 Navier–Stokes equations

The motion of incompressible fluids, including those exhibiting complex non-Newtonian
behaviors such as viscoplasticity and viscoelasticity, is fundamentally governed by the
principles of mass and momentum conservation. These principles are mathematically
expressed through a generalized form of the Navier-Stokes equations. For an incom-
pressible fluid, these governing equations are presented in a strong vector form suitable
for continuum mechanics:

Du

Dt
=

1

ρ
{−∇p+∇ · τ s +∇ · τ p}+ aext, (3.33)

∇ · u = 0, (3.34)

Dx

Dt
= u. (3.35)

where ρ is the fluid density, u is the velocity vector, p is the pressure, x is the posi-
tion of the Lagrangian parcel, aext is the external–acceleration vector field, τ s is the
solvent–diffusion stress tensor, and τ p is the extra–stress polymeric tensor, and the
advective Lagrangian derivative is denoted as D/Dt. These equations form a system
of coupled, nonlinear partial differential equations (PDEs), which are dependent on
time (t ≥ 0) and space (in the fluid domain Ω), even the equations do not specify it
explicitly. From a Lagrangian perspective, the momentum equation (3.33) describes
the acceleration experienced by an individual fluid parcel. This parcel advects along its
trajectory governed by the local velocity field as described by the kinematic condition
(3.35), while the movement is incompressible due to the continuity constraint (3.34).

Equation (3.33) splits the extra stress into the viscous–solvent contribution, τ s, and
the (viscoelastic) polymer stress contribution, τ p. This decomposition can be extended
to the total effective viscosity of the fluid if a generalized Newtonian framework is con-
sidered. Consequently, the total dynamic viscosity of the fluid might be conceptualized
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as a sum of solvent and polymeric contributions:

µ = µs + µp, (3.36)

where µs is the dynamic viscosity of the solvent and µp is the dynamic viscosity of the
polymeric part. It should be noted that for viscoelastic fluids, the polymeric stress τ p

(containing its viscosity) is typically defined by its own evolution equation rather than
a simple viscosity. In the following subsections, the definition of solvent and polymeric
stresses are defined.

3.6.1 Diffusion of constant-viscosity flows

The contribution to the total stress arising from the solvent’s viscous properties (often
termed solvent diffusion in some contexts) is typically modeled using a symmetric stress
tensor linearly proportional to the rate of strain:

τ s = 2µs (E)E, (3.37)

where E is the rate of strain, i.e. symmetrized gradient of the velocity:

E =
1

2

[
∇u+ (∇u)⊤

]
, (3.38)

which also known as the rate of deformation tensor. In the momentum equation (3.33),
the force per unit volume (i.e. the acceleration) due to this solvent stress is given by
its divergence, ∇ · τ s/ρ. The form of this divergence term depends on whether the
solvent viscosity is constant or variable.

To calculate ∇ · τ s = ∇ · [2µs (E)E], let’s define the “divergence of the scalar–tensor
product” identity for a tensor T and scalar ϕ as:

∇ · (ϕT) = ϕ∇ ·T+T∇ϕ. (3.39)

Therefore, the divergence of the shear stress τ s may be expanded by applying the
identity (3.39) to equation (3.37):

∇ · τ s = ∇ · (2µsE)

= 2µs∇ ·E + 2E∇µs. (3.40)
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Equation (3.38) is substituted into equation (3.40) to obtain the following:

∇ · τ s = µs ∇ ·
[
∇u+ (∇u)⊤

]
+ 2E∇µs

= µs∇2u+��������:0
µs∇ · (∇u)⊤ + 2E∇µs

= µs∇2u+ 2E∇µs. (3.41)

The term ∇ · (∇u)⊤ is null vector, since the “divergence of the transpose of a vector
gradient” is equivalent to the “gradient of the divergence of a vector”, which is evident
using the index notation:

∇ · (∇u)⊤ =
∂2uj

∂xi∂xj

=
∂

∂xi

∂uj

∂xj

= ∇ (∇ · u) = 0.

The above shows that if the solvent viscosity is constant throughout the fluid domain
(∇µ = 0), then the divergence of the solvent stress tensor simplifies significantly, i.e.
the diffusion acceleration depends on the Laplacian of the velocity:

∇ · τ s = µs∇2u. (3.42)

3.6.2 Diffusion of variable-viscosity flows

For the sake of completeness, the diffusion of constant–viscosity flows was defined.
Since this work investigates variable–viscosity flows, ∇µ ̸= 0, the above simplification
does not hold. If the solvent viscosity varies with position (e.g., due to temperature
gradients, pressure, or other scalar fields), i.e. for µ = f (x,u, p, ...), the divergence
term has a more complex equation (3.41). Now equation (3.41) may also be investigated
further. Equation (3.38) may be substituted into equation (3.37) and ∇ · τ s may be
expressed as:

∇ · τ s = ∇ · (2µsE)

= ∇ ·
{
µs

[
∇u+ (∇u)⊤

]}
= ∇ · (µs∇u) +∇ ·

[
µs (∇u)⊤

]
. (3.43)

The identity (3.39) may be applied to the second term of the right-hand-side in equation
(3.43), therefore obtaining:

∇ · τ s = ∇ · (µs∇u) +��������:0
µs ∇ · (∇u)⊤ + (∇u)⊤ ∇µs. (3.44)

In conclusion, the diffusion acceleration has to take into account both derivatives of
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the viscosity and velocity:

∇ · τ s = ∇ · (µs∇u) + (∇u)⊤∇µs. (3.45)

Fluids devoid of elasticity can be effectively modelled using the diffusion term with
variable viscosity without including the effect of τ p, because their non-linear viscosity
characteristics primarily respond to shear rates without memory effects or elastic recov-
ery, i.e. µ = f (E). The viscosity function can be described using any non-Newtonian
model.

3.6.3 Acceleration due to polymeric stress

To accurately model viscoelastic fluids, which exhibit both viscous (energy-dissipating)
and elastic (energy-storing) characteristics, it is necessary to introduce an extra stress
tensor, τ p, beyond the purely viscous stress τ s. This component is commonly referred
to as the polymeric stress tensor (or elastic stress tensor), defined for capturing the
fluid’s memory effects (deformation history) and its capacity to store and subsequently
release elastic energy. The evolution of τ p in time and space is typically described
by a constitutive equation that involves an time derivative to ensure frame-invariance
(i.e., the constitutive relationship remains the same regardless of the observer’s motion
or rotation). A common choice is the upper-convected derivative (also known as the
Oldroyd derivative), which is defined as:

∇
τ p =

Dτ p

Dt
− τ p · ∇u− (∇u)T · τ p. (3.46)

If the polymeric stress tensor is assumed to be symmetric, this expression can be
simplified using the rate-of-strain tensor:

∇
τ p =

Dτ p

Dt
− 2τ p · E, (3.47)

where the dot–product between two tensors may be defined using the matrix product,
A ·B = BA.

The use of convected derivatives like the upper-convected or lower-convected derivative
is crucial in viscoelastic constitutive models to ensure that the material response is
described independently of the observer’s reference frame, a principle known as material
frame-indifference or objectivity.

For this study, as a demonstrative example to validate the proposed numerical method-
ology, the Oldroyd-B model is employed to represent the polymeric contribution to the
total stress. The Oldroyd-B model is one of the simplest linear constitutive models
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capable of capturing fundamental viscoelastic phenomena, such as stress relaxation
and non-zero normal stress differences in shear flow, making it suitable for describ-
ing dilute polymeric solutions under general flow conditions [119]. Besides Oldroyd-B
model, several other models were introduced by Rivlin, Green, Tobolsky, Ericksen,
Lodge, Phan-Thien, Tanner, Giesekus, Doi, Edward [119]. The evolution of the poly-
meric stress tensor according to the Oldroyd-B model is given by:

τ p + λ1
∇
τ p = 2µpE, (3.48)

where λ1 is the relaxation time over which the elastic stress relaxes when the strain
is constant, and µp is the polymeric viscosity contribution representing the viscosity
associated with the polymer chains.

The Oldroyd-B model can also be formulated to include a solvent viscosity and a
retardation time, λ2, which is related to the decay of memory effects in the material.
The viscosity ratio may be defined as β = µs/µ = λ2/λ1. Setting λ2 = 0 reduces the
model to the Upper-Convected Maxwell (UCM) model, as this modification eliminates
the solvent viscous contribution.

In a Lagrangian framework, the constitutive equation (3.48) can be transformed into
a system of ordinary differential equations (ODE), along particle paths. This transfor-
mation is advantageous because the Lagrangian approach inherently tracks the defor-
mation history and stress evolution of individual material elements as they move with
the flow.
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Understanding the intricacies of viscoplastic and viscoelastic models is essential in nu-
merous scientific and engineering domains, as these models capture the time-dependent
deformation and flow behaviors of materials under stress. Their significance extends
to diverse applications such as material design, structural analysis, and manufacturing
processes, enabling more accurate predictions and optimizations in areas ranging from
aerospace engineering to biomechanics.

Linear viscoelastic behavior is defined by a material’s ability to exhibit both viscous
and elastic properties when deformed. When exposed to external forces, viscoelastic
materials can deform over time. This behavior is defined by a linear relationship be-
tween stress and strain, where stress is the force per unit area applied to the material
and strain is the resulting shape or deformation. The governing equations of linear vis-
coelasticity are closely related to other linear response theories, such as communication
engineering and signal processing. Linear viscoelasticity is related to linear response
theory in general, in which the entire system is linear, but this does not imply that
the variables have a linear relationship. It refers to the equations that specify variables
in linear algebraic, differential, or integral equations or combinations. As a result, a
linear system implies that the variables of interest are connected via linear equations.

In general, energy response in viscoelastic materials involves viscous response which
occurs when the current condition of stress and strain rate are significant and related
to one another. Elastic response occurs when the present rate of stress is proportional
to the current state of strain. In terms of energy, a viscous reaction is a dissipative
response that loses energy, whereas an elastic response stores energy. The dissipation
rate of viscous fluids is proportional to stress times strain rate, but in Newtonian fluids
it is related to viscosity times strain rate squared. This is the rate of fluid dissipation.
Similarly, with Hooke’s elastic material, the storage energy is proportional to stress
times strain and to module times strain squared. In Newtonian fluids, stress is related
to viscosity and strain rate, whereas stress in Hooke’s elastic solids is proportional to
modulus and strain. The contribution from both of these responses is referred to as the
viscoelastic response. There will be energy dissipation and energy storage, with the
relative contributions of these two varying depending on the time scale chosen. The
total material response may differ depending on how quickly or slowly the material
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is examined. The entire response can be related to the current state of stress and
strain, strain rate, rate of stress, rate of stress rate, and so on in terms of mathematical
formulation for defining the behavior. The time frame range of interest defines the
other relative contributions. As a result, relaxation time is defined since much depends
on how the material is evaluated, how fast or slow the material is analyzed, and how
the reaction changes due to the examined material’s viscous or elastic contribution.

The constitutive equation for linear viscoelasticity provides a basic framework for un-
derstanding the relationship between stress and strain in these materials. In the context
of linear viscoelasticity, various mathematical methods can be used to describe the
mechanical behavior of materials. For linear viscoelastic materials, the constitutive
equation is a useful tool for describing the mathematical relationship between stress
and strain. However, when considering the mathematical methods used to specify the
mechanical behavior of linear viscoelastic media, it is important to note that both lin-
ear hereditary laws and differential operator laws have practical applications, but each
method has advantages and disadvantages. Differential equations are commonly used
and debated since they can relate all distinct quantities. The overall formulation can
also be viewed from the current level of stress, which is determined by the material’s
overall history of deformation, resulting in the integral formulation. The models that
are described in integral form, where the current state of stress is determined by all
of the previous deformations that the material has undergone. When looking at vis-
coelastic response provided that material is probed at different times and frequencies,
it is typically seen that either very high times and frequencies or very low frequencies
and short times yield either entirely viscous or completely elastic response.

To fully comprehend the constitutive equation for linear viscoelasticity, it is neces-
sary to consider the various approaches that can be taken to establish this relation-
ship. Three major approaches are frequently used: integral models, linear differential
models, and fractional derivative models. Integral models approach the constitutive
equation by expressing it in the form of convolution integrals. These integrals cap-
ture the viscoelastic material’s time-dependent behavior while also relating stress and
strain mathematically. Integral models are especially useful for dealing with materials
that exhibit complex and nonlinear behavior over time. In contrast, linear differential
models describe the constitutive equation using differential operators.

For small deformations, the strain reduces to an infinitesimal strain tensor; for arbitrar-
ily large deformations, the overall finite strain tensor should be used. When working
with fluid-like materials, strain frequently does not appear in the overall governing
equations; however, when the integral form is considered, strain may appear in the
overall governing equation. If solid-like materials are the majority, the standard lin-
ear solid model includes strain in the overall governing equation. When considering an
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Figure 4.1: Pipkin diagram.

overall model for large deformations, the small infinitesimal strain tensor, which is valid
for small deformations, must be replaced by the finite strain tensor. The overall finite
strain tensor may be less common than the nonlinear response of solid-like materials.

The Pipkin diagram is a visual representation of the relationship between stress and
strain in a material. The elasticity in the Pipkin diagram is shown in Figure 4.1. This
diagram is widely used in the field of elasticity to analyze and comprehend the behavior
of materials under various loading conditions. It generates a visual "fingerprint" of a
material and enables quantitative analysis of its stress-strain relationship.

4.1 Material responses

Responses in linear viscoelasticity refer to a material’s behavior in the presence of an
external force or deformation over time. Viscoelastic materials have viscous (flow-
like) and elastic (spring-like) properties, and their response to stress or strain varies
over time. Material reactions can be used to categorize viscoelastic responses and
refers to the qualitative description of a class responses, such as viscous, viscoelastic,
thixotropic, and so on. Materials may display characteristic responses, such as the
Maxwellian response. Material functions measure material reaction in controlled set-
tings. The material functions examined include viscosity, relaxation modulus, storage
modulus, loss modulus, stress relaxation, dynamic viscosity, creep compliance, exten-
sional viscosity, and stress growth viscosity. A material function should ideally be
linked to another material function. Constitutive models such as the Carreau Yasudi
model, Maxwell model, Structural model, and Herschel Bulkley model can be defined
if the material response and material functions are recognized. Linear viscoelasticity
has two primary responses: the stress response and the strain response. Key material
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functions in linear viscoelasticity include:

• Stress response σ(t) is the stress force applied per unit area and measures a
material’s internal resistance to deformation, which is typically represented by a
stress relaxation function or a dynamic modulus.

• Stress–relaxation modulus G(t) describes the decay of stress over time when the
material is subjected to a constant, instantaneously applied strain. For an ideal
elastic solid, G(t) would be constant (the elastic modulus). For a viscoelastic
material, G(t) typically decays from an initial glassy modulus G(0) towards a
long-time equilibrium modulus (which may be zero for viscoelastic liquids).

• Creep compliance J(t) describes the increase of strain over time when the ma-
terial is subjected to a constant, instantaneously applied stress. For an ideal
elastic solid, J(t) would be constant (the inverse of the elastic modulus). For a
viscoelastic material, J(t) typically increases from an initial instantaneous com-
pliance J(0) and may continue to increase indefinitely (for viscoelastic liquids)
or approach an equilibrium compliance (for viscoelastic solids).

• Dynamic moduli (Storage Modulus G′(ω) and Loss Modulus G′′(ω)) characterize
the material response to oscillatory (sinusoidal) deformation at a given angular
frequency ω. When a linear viscoelastic material is subjected to a small-amplitude
sinusoidal strain, the resulting stress σ(t) will also be sinusoidal at the same fre-
quency but out–of–phase. G′ represents the elastic (energy storage) component,
and G′′ represents the viscous (energy dissipation) component of the response.

• Dynamic viscosity (η′ and η′′) are related to the dynamic moduli, often in-phase
component with strain rate and out-of-phase component with strain rate.

These material functions are central to linear viscoelasticity, and are measured using
experimental techniques (stress relaxation testers, creep rheometers, and dynamic me-
chanical analyzers (DMA)) to provide. Once these material responses and functions are
experimentally determined or theoretically understood, they form the basis for defining
or fitting constitutive models.

4.2 Constitutive equations of linear viscoelasticity

For linear viscoelasticity, constitutive equations must describe materials that exhibit
both viscous (fluid-like, energy-dissipating) and elastic (solid-like, energy-storing) be-
havior, with the crucial assumptions that the response is linearly proportional to the
applied load or deformation and that the Boltzmann superposition principle holds.
This principle implies that the response to a complex loading history is the sum of re-
sponses to individual loading steps. Constitutive equations are often derived from the

68



4 Models of non-Newtonian fluids

premise of a stored energy functional that reflects the material’s internal energy dur-
ing deformation, or they can be formulated based on phenomenological models (e.g.,
arrangements of springs and dashpots). These equations typically take the form of
linear differential equations or, more commonly for capturing time-dependent history
effects, integral equations known as linear hereditary laws. As detailed by Leitman and
Fisher [120], these hereditary laws link the current stress to the entire history of strain
(and vice-versa) through convolution integrals involving material-specific functions. As
stated in the previous section, two fundamental material functions characterize the be-
havior in linear viscoelasticity: the relaxation modulus G(t) and the creep compliance
J(t).

The stress relaxation constitutive equation relates the stress σ and the strain ε through
the relaxation modulus G(t), which describes how stress relaxes over time for a given
strain history. The integral form is given by:

σ(t) =

tˆ

−∞

G(t− τ)
dε(τ)

dτ
dτ. (4.1)

Assuming the material is undisturbed for τ < 0 and the strain is applied starting from
τ = 0:

σ(t) = G(t) ε(0)

tˆ

0

G(t− τ)
dε(τ)

dτ
dτ. (4.2)

In the frequency domain, and under sinusoidal loading, this can be expressed as a
convolution integral:

σ(ω) = G(ω) ∗ ε(ω) (4.3)

where ∗ denotes convolution operator, ω is the angular frequency, and G(ω) is the
complex relaxation modulus in the frequency domain which can be related to G(t)

through a Fourier or Laplace transform.

The creep constitutive equation relates the strain ε and the stress σ through the creep
compliance J(t), which describes how strain accumulates over time for a given stress
history. The integral form is given by:

ε(t) =

tˆ

−∞

J(t− τ)
dσ(τ)

dτ
dτ. (4.4)

Similarly as above, assuming the material is undisturbed for τ < 0 and the stress is
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applied starting from τ = 0:

ε(t) = J(t) σ(0) +

tˆ

0

J(t− τ)
dσ(τ)

dτ
dτ (4.5)

In the frequency domain, the relationship is:

ε(ω) = J(ω) ∗ σ(ω) (4.6)

where J(ω) is the complex creep compliance in the frequency domain.

In conclusion, these integral constitutive equations, defined by G(t) or J(t), effectively
capture the time-dependent, hereditary nature of linear viscoelastic materials.

4.3 History independent models

Now that the viscoelasticity has been defined, it is important to introduce a simplifica-
tion, i.e. generalized Newtonian fluid models, which are not dependent on the history
of deformation. As the flow behavior of Newtonian and non-Newtonian fluids dif-
fers significantly, many non-Newtonian fluids where the primary deviation from New-
tonian behavior is a shear-rate-dependent viscosity, and time-dependent effects (like
thixotropy or viscoelastic memory) are negligible for the process under consideration.
In such cases, generalized Newtonian fluid models are widely employed. These models
express the shear stress tensor as a product of apparent viscosity and the rate-of-strain
tensor γ̇ (or 2E).

4.3.1 Bingham model

The Bingham model, introduced by Bingham in 1922 [2, 13] is a fundamental two-
parameter model for viscoplastic materials. These materials exhibit a yield stress below
which they behave as a rigid solid, and above which they flow with a constant plastic
viscosity. Due to its relative mathematical simplicity, it is widely used in engineering
applications across industries like food processing, drilling, oil and gas, and chemicals,
where many industrial fluids approximate this behavior. According to the [71] 3D
model, the stress tensor is calculated as:

τ =

[
µ∞ +

τ0
|γ̇|
(
1− e−m|γ̇|)] γ̇, (4.7)

where τ0 is the yield stress, µ∞is the dynamic viscosity at infinite shear rate, and m

is the regularization parameter to avoid discontinuity in numerical simulations. The
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effective viscosity is calculated using the following expression:

µ (|γ̇|) = µ∞ +
τ0
|γ̇|
(
1− e−m|γ̇|) . (4.8)

4.3.2 Power Law model

The Power-Law (or Ostwald-de Waele) model is a simple yet widely used two-parameter
model that can describe shear-thinning or shear-thickening behavior over a limited
range of shear rates. For purely viscous fluids described by this model, the stress
tensor is:

τ = k |γ̇|n−1 γ̇, (4.9)

and the model is characterised by the effective viscosity, which is expressed as a function
of the shear rate in the following manner:

µ (|γ̇|) = µ0 |γ̇|n−1 , (4.10)

where µ0 denotes the flow consistency index, while n is the flow behavior index. Based
on the flow-behavior index n, three distinct types of fluids can be mathematically
modelled. For n < 1, the effective viscosity decreases with increase of shear rate, i.e.
it describes shear-thinning fluid. For n > 1, the model describes a shear-thickening
fluid, and n = 1 describes a Newtonian fluid. The zero-shear viscosity is approached
at minimal shear rates, whereas the infinite shear viscosity is approached at maximal
shear rates.

4.3.3 Cross Power Law model

The Cross power–law model is a four-parameter model that describes shear-thinning
behavior more realistically over a wider range of shear rates than the Power–law model.
It incorporates limiting viscosities at zero and infinite shear rates. The effective vis-
cosity is given by:

µ (|γ̇|) = µ∞ +
(µ0 − µ∞)

1 + (m γ̇)n
, (4.11)

where µ0 is viscosity at zero shear rate, µ∞ is viscosity at infinite shear rate, n is
the dimensionless flow index rate parameter expressing the degree to which viscosity
is dependent on shear rate in the shear-thinning zone, and m is the amount of time
in s required for linear behavior to change to a Power Law. The model smoothly
transitions from Newtonian behavior at low shear rates (µ ≈ µ0) to Power-Law like
shear-thinning in an intermediate range, and back to Newtonian behavior at high shear
rates (µ ≈ µ0∞).

71



4 Models of non-Newtonian fluids

4.3.4 Bird–Carreau model

Bird Carreau is a four parameter model that is valid for the entire range of shear rates.
When there are significant deviations from the Power Lawsystems overall analysis
model, such as at very high and very low shear rates, it is necessary to incorporate the
values of viscosity at zero and at infinite shear rate. At high and low shear rate values
the Carreau fluid behaves as a Newtonian fluid. The effective viscosity is defined by
the following equation:

µ (|γ̇|) = µ∞ + (µ0 − µ∞)× [1 + (k γ̇)a](n−1)/a , (4.12)

where a influences the shape of the transition between the Newtonian plateau and the
power-law region, and is set to the default value of 2. µ0 is the dynamic viscosity at
zero shear rate, µ∞ is the dynamic viscosity at infinite shear rate, k is the relaxation
time in seconds s and n is power index.

4.3.5 Herschel–Bulkley model

Herschel-Bulkley model also belongs to the group of generalized models of a non-
Newtonian fluid. In this model stress-strain relationship is non-linear and it is defined
by shear stress tensor and effective viscosity equation as follows:

τ = τ0 + k |γ̇|n , (4.13)

µ (|γ̇|) = min(µ0,
τ0
|γ̇|

+ k · |γ̇|n−1 , (4.14)

where µ0 is viscosity at zero shear rate, τ0 is the yield shear stress, k is the consistency
and n is the flow index. If the τ < τ0 the Hershel-Bulkley fluid will behave as a solid,
and based on the value of flow behavior index the fluid shows shear-thinning character
for 0 < n < 1, Newtonian character for n = 1 and τ0 = 0, and shear-thickening
character for n > 1.

4.3.6 Casson model

The Casson model as a rheological model that is used to describe viscoelastic flow. It
is expressed in accordance with the Papanastasiou [71] regularization:

τ =

[
√
µ∞ +

√
τ0
|γ̇|

(
1− e−

√
m|γ̇|
)]2

γ̇, (4.15)

where τ0 is the yield stress, µ∞ is the dynamic viscosity at infinite shear rate, and m is
the regularization parameter. The effective viscosity is determined using the following
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method:

µ (|γ̇|) =
[
√
µ∞ +

√
τ0
|γ̇|

(
1− e−

√
m|γ̇|
)]2

. (4.16)

4.4 History dependent models

4.4.1 Linear Maxwell model

There are several factors in viscoelasticity that are associated to one another. The
Maxwell model is a two-parameter model used to describe linear viscoelasticity. Stress
is related to stress rate and strain rate in this model. As a mode of deformation, simple
shear is utilized, and just one component of stress rate and one component of strain
rate is considered.

There are nine stress components in practically in all materials, and six components
due to matrix symmetry. To fully specify the state of the system, all of these must be
solved, but if the material is just subjected to simple shear, it is sufficient to have only
one component of stress and strain rate. It is important to remember that the Maxwell
model is only valid for simple shear issues with small deformations. The Maxwell model
is as follows:

τ + λτ̇ = µγ̇, (4.17)

where λ is relaxation time, µ is the constant which determines viscous contribution.
The model can be stated with subscripts to indicate that simple shear is the mode of
deformation:

τyx + λ
στyx
σt

= µ ˙γyx. (4.18)

The situations where λ → 0 Maxwell model is as follows:

f(λ, τ ) = 2
λ1

λ2

eQ0(λ−1)(1− 1

λ
) +

1

λ2

[
1− α

3G2
0

tr(τ · τ )
]
, (4.19)

τyx ≈ µ ˙γyx, (4.20)

the model reduces to viscous fluid, i.e it describes Newtonian fluid. When λ → ∞ the
model is as follows:

˙γyx ≈ σγyx
σt

, (4.21)

The model behaves like an elastic solid and is only valid for small deformations. In
general, strain rate is not the same as strain rate tensor, and finding convicted rates of
strain is required to obtain strain rate. This relationship is adequate because deforma-
tions are minor and only linear viscoelasticity is addressed. As a result, it is possible
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Figure 4.2: The Maxwell model that consists of a completely viscous damper and a
strictly elastic spring arranged in series.

to demonstrate:
λ
στyx
σt

= µ
στyx
σt

, (4.22)

when two derivatives are associated for any arbitrary amount of time, it follows that:

τyx =
µ

λ
γyx. (4.23)

This implies that stress is proportional to strain and is the second parameter that
defines the Maxwell model, whereas G = µ/λ is a constant that defines the elastic
contribution. As seen, the Maxwell model combines viscous and elastic responses.

Viscoelastic models are sometimes described using mechanical analogs. They are used
to illustrate how viscous and elastic responses are coupled in a particular model.
Maxwell’s model is a sequence of springs representing elastic response and dashpot
resenting viscous reaction. The analogies aid in comprehending and analyzing the
effect of stress and strain on the given model.

Stress relaxation is another type of mechanical deformation. Stress relaxation is an
experiment in which the material gamma γyx =

0
γyx is subjected to a continuous strain

at time t = 0. The superscript 0 signifies that the value is constant and does not vary
over time. Constant strain is imparted to the material during the experiment, and the
response of viscoelastic material may be seen in the response of the Maxwell model.
Given that γyx =

0
γyx = const., the Maxwell model’s governing equation is as follows:

τyx + λ
στyx
σt

= 0; τyx(0) = G
0
γyx, (4.24)

Due to the fact that this is an ordinary differential equation, the solution is exponential.
For the initial condition, it is possible to assert that the stress response is fully elastic.
For every applied deformation, the parameter G specifies the elastic response of a
Maxwell model, i.e. the amount of stress required in the initial time interval t = 0. As
may be seen from the following equation, the stress decays with time.

τ(t) = G
0
γyx

(− t
λ
)

, (4.25)
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Figure 4.3: Stress response to a step strain.

G(t) =
τyx(t)

0
γyx

= G(− t
λ
), (4.26)

where G is called relaxation module. Because there is a stress decay in the material, as
illustrated in Figure 4.3, the stress decreases, a phenomenon known as stress relaxation.
The amount of stress necessary to maintain the material in its new deformed state
reduces with time, and the rate at which this occurs is defined by λ. If λ ∼ 0 , the
stress equals zero and the decline is immediate for perfectly viscous fluid. If λ ∼ ∞,
there is only an elastic reaction and no decay for perfectly elastic solid.

In the Maxwell model, stress and stress rate are connected to strain rate, and stress
results in an exponentially decaying function. The decay of a viscous fluid is instan-
taneous, whereas Hookean elastic material never decays. Lambda defines how fast or
slow the total decay will be for general viscoelastic material with relaxation time as an
exponential function. Based on this, the relaxation module is defined as an exponential
function that is connected to stress as a function of time divided by strain.

Multiple relaxation moduli can be identified for common materials. Figure 4.3 shows
an exponential curve that corresponds to only one relaxation process, as well as the
relaxation time. Most common materials, in general, will not be able to fit a single
exponential. In that situation, it is necessary to determine the significance of the
material’s numerous relaxation processes.

Given that any differential equation can be recast into integral form, for example, by
employing an integrating factor. In general, there are two types of models in rheological
analysis; one is a rate type of model (differential form of Maxwell model) because
different rates of different quantities are incorporated, and the same model can be
expressed as the stress at present time, which is integral of all past deformations.
Because the governing problem is a differential equation, several methods for solving
ordinary differential equations, such as the integrating factor approach, can be utilized
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to simplify the overall equation. In the case of the Maxwell model, the integral form
is as follows:

τyx
1

λ
e(

t
λ
) +

∂τyx
∂t

e(
t
λ
) =

n

λ
˙γyxe

( t
λ
), (4.27)

∂

∂t

(
τyxe

( t
λ
)
)
= G ˙γyxe

( t
λ
), (4.28)

τyx(t) = −
t̂

−∞

Ge
−
(

t−t
′

λ

)
˙γyxdt

′
, (4.29)

where overall stress is shown as an integrated exponential function multiplied by strain
rate. Stress at time t is as follows:

t =
∑
past

[G (t− t′)]×
[
˙γyx∆t

′
]
, (4.30)

where the term Ge
−
(

t−t
′

λ

)
represents weighting factor, and the term ˙γyxdt

′ represent
incremental deformation in a small time window. Time-related stress t is the sum of
all previous effects, where each effect is a relaxation module multiplied by strain at
a different time. The variable (t− t′) keeps track of how far back in time is looked.
When the time is not too far away, the weighting factor is big, and when the time is
much farther away, the weighting factor tends to fall off to zero. Depending on the
needs, one can use either the integral form or the rate type form.

Normal stress differences in complex materials can be represented by a convected
Maxwell model, in which case the convected rates will be utilized instead of the normal
rates. This will be an objective and frame-invariant model that can handle arbitrarily
huge deformations. In that situation, the convected model is the rate type model, and
there is an equivalent termed the lodge rubber like liquid model, which is an integral
model.

4.4.2 Oldroyd-B model

In following section non-linear rheological response of materials and what are the tools
that are needed in order to describe the non-linear response are going to be discussed.
Since strain is defined through infinitesimal strain tensor which is only valid for small
deformations. For large deformations strain tensor should be redefined. In addition,
convected rates to be frame invariant and for rates to be proper, instead of using
partial or substantial derivatives, the frame invariant rates are needed and especially
for quantities such as stress and strain. The frame invariant rates are very useful in
determining physically meaningful rates. As an example of that, upper convected and
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lower convected derivatives which are quite commonly used in describing the non-linear
response of materials.

Time dependent fluids are harder to model since shear stress τ changes with respect
to time. Shear stress τ increases or decrease monotonically with constant shear rate γ̇

and constant temperature. Initial properties are recovered some time after the shear
rate has returned to zero. A thixotropic fluids experience hysteresis loop. Examples
of these fluids are drilling fluids, grease, printing ink, margarine, and some polymer
melts.

The Oldroyd-B model, introduced by James G. Oldroyd in 1950 [19], is a linear vis-
coelastic constitutive equation widely used to describe the behavior of certain dilute
polymer solutions. It is a time-dependent model capable of capturing fundamental
viscoelastic phenomena such as stress relaxation, creep, and non-zero normal stress
differences in shear flow, while remaining relatively simple to implement and analyze.
A common way to present the Oldroyd-B model is by decomposing the total stress
tensor into a solvent contribution and a polymeric (or elastic) contribution.

It is a time dependent model that can describe vis

f(λ, τ ) = 2
λ1

λ2

eQ0(λ−1)

(
1− 1

λ

)
+

1

λ2

[
1− α

2
0G3

tr(τ · τ )
]
, (4.31)

coelastic flow. For a fluid, the stress tensor is calculated from the following equation:

τ + λ1
∇
τ = 2µ0 [E + λ2E] , (4.32)

where µ0 is total dynamic viscosity composed of solvent dynamic viscosity µs and
polymer viscosity µp, λ1 is the relaxation time, λ2 is the retardation constant defined
as follows:

λ2 =
µs

µ0

λ1. (4.33)

The upper-convected time derivative of a tensor,
∇
A, is expressed as follows:

∇
A =

DA

Dt
−A · ∇u− (∇u)T ·A. (4.34)

The shear-stress tensor can be split into the Newtonian solvent stress τs and the extra
stress τp as follows:

τ = τ s + τ p, (4.35)

where the solvent stress is defined as:

τ s = µsγ̇, (4.36)
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and the extra stress is defined using the expression:

τ p + λ1
∇
τ p = µpγ̇. (4.37)

4.4.3 eXtended Pom-Pom (XPP) model

The eXtended Pom-Pom (XPP) model is a sophisticated constitutive equation devel-
oped to describe the rheological behavior of a significant class of branched polymer
melts and concentrated solutions, particularly those exhibiting strain-hardening in ex-
tensional flows. The original Pom-Pom model, proposed by McLeish and Larson [121]
was derived from molecular considerations of polymer chain dynamics, specifically mod-
eling "pom-pom" shaped molecules with a backbone and multiple arms. Inkson et al.
[122] later applied and further developed aspects of this model. The XPP model at-
tempts to bridge the gap between detailed molecular theories and phenomenological
models by incorporating key molecular mechanisms (like backbone stretching, arm re-
traction, and orientation) into a manageable macroscopic constitutive equation. The
single-equation form of the XPP model, as often presented, relates the polymeric stress
tensor to the deformation rate and molecular parameters. A common representation
is:

f(λ, τ )τ + λ1
∇
τ +G0(f(λ, τ )− 1)I +

α

G0

(τ · τ ) = 2µPE, (4.38)

where λ1 governs the relaxation of the backbone chain extension, G0 is the linear
relaxation modulus, α is the parameter that controls the anisotropy of the stress tensor,
and the function f(λ, τ ) is defined as:

f(λ, τ ) = 2
λ1

λ2

eQ0(λ−1)(1− 1

λ
) +

1

λ2

[
1− α

3G2
0

tr(τ · τ )
]
, (4.39)

where Q0 is the number of arms at each end of the backbone of the pom-pom molecule,
λ2 is the orientation relaxation time of the backbone segments, and λ is the backbone
stretch specified as follows:

λ =

√
1 +

1

3G0

tr(λ). (4.40)

The temporal constants of this model are λ1 and λ2 being, respectively, the orientation
and backbone stretch relaxation times.
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5.1 The splitting scheme

Numerical methods that separate velocity and pressure yield simpler systems of equa-
tions with fewer interdependent variables, so avoiding saddle-point problems. Con-
sequently, these techniques are appealing for specific large-scale issues. This thesis
presents a numerical method for the pressure Poisson equation (PPE) reformulation
of the Navier-Stokes equations related to viscoelastic fluids within a completely La-
grangian framework. Consequently, by decoupling pressure and velocity using the
split-step technique [123, 7], the equations (3.33), (3.34), and (3.35) represent the
three primary phases for solving the flow within a time step:

1. moving the fluid particles according to (3.35),

2. solving the pressure equation, derived from (3.34),

3. solving the velocity field using (3.33),

4. increment the time and go to step (1).

The mathematical and numerical details on the listed steps are outlined in the following
text.

5.1.1 Pressure equation

A crucial element in developing an efficient numerical approach that separates velocity
from pressure is the identification of the appropriate pressure equation. The pressure
equation is utilised as a replacement for the continuity constraint equation (3.34),
namely the condition that the velocity field stays solenoidal. The pressure field, p (x),
must produce the acceleration of fluid particles via the pressure gradient ∇p, ensuring
that the equation (3.34) is fulfilled at all discrete time intervals. The pressure field
to be determined comes from a scalar Poisson equation, which is derived by applying
the divergence operator ∇· onto the momentum equation (3.33). The corresponding
boundary condition at walls is derived by dotting the momentum equation (3.33) by
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the wall normal n [124]. These operations yield the following system:

∇2p = ∇ ·
{
−ρ

Du

Dt
+ ρaext +∇ · τ s +∇ · τ p

}
, (5.1)

∂p

∂n
= n ·

{
−ρ

DU

Dt
+ ρaext + µ∇2u

}
. (5.2)

where all the terms are described as follows. For the first term, the divergence of the
Lagrangian acceleration is approximated as:

∇ · Du
Dt

= Cacc (∇ · u) |u|
∆

. (5.3)

where Cacc is the coefficient for suppressing velocity divergence, based on particle accel-
eration. Integrating ∇ ·u into equation (5.1) is crucial to mitigate the compressibility
in time, and hence, it is commonly referred to as the ‘divergence damping term’. Al-
though its application and interpretation in the Eulerian framework remain ambiguous
[125, 123], it possesses physical significance inside the Lagrangian framework. The ex-
pression (∇ · u) |u| /∆ may be understood as ‘how fast the divergence propagates to
neighbouring particles’, which must be handled within a time step. In this thesis, the
vector for the external acceleration field is taken as constant, ∇ · aext = 0. The third
term from the equation is the Laplacian, which accounts for the velocity divergence
sourcing from the viscous term:

∇ · (∇ · τ s) = Cvisc ∇ · [µs∇ (∇ · u)] , (5.4)

where Cvisc is the coefficient for suppressing velocity divergence, based on viscosity.
The last term accounts for the elasticity:

∇ · (∇ · τ p) = Celast ∇2tr (τ p) , (5.5)

where Celast is the coefficient for suppressing velocity divergence, based on elasticity
component. The coefficients Cacc, Cvisc and Celast are relaxation coefficients, usually
taken as 1. In equation (5.2) we assume µ = const at Γwall for simplicity, even for
fluids with spatialy variable viscosity. This serves as an adequate approximation for
second–order schemes, as the viscosity value has already been extrapolated from ad-
jacent fluid node to the wall, and a second extrapolation would not enhance physics.
Comprehensive information on the solvability and convergence of the the system of
equations (5.1)–(5.2) is provided in [7].

For single phase flows, the gas phase is assumed not to affect the liquid phase flow,
and therefore it is not modelled. Consequently, the Dirichlet boundary condition for
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the pressure must be imposed at the free surface. When the surface tension is needed
to be included in the simulation, the Dirichlet boundary condition is determined from
the Young–Laplace equation:

p = σκ. (5.6)

When the surface tension is neglected, the ambient pressure is set to zero value:

p = 0. (5.7)

In order to impose the boundary conditions at the free surface, the meshless points
that are on the edge of the point cloud must be recognised and marked as boundary
points to impose the pressure boundary condition (5.6) or (5.7).

Divergence of the diffusion

If one examines equation (5.4), the divergence of the diffusion stress is a scalar that is
presented in fully expanded formulation:

∇ · [∇ · (µ∇ · u)] = µ
∂

∂x

(
∂2u

∂x2
+

∂2u

∂y2
+

∂2u

∂z2

)
+ (5.8)

µ
∂

∂y

(
∂2v

∂x2
+

∂2v

∂y2
+

∂2v

∂z2

)
+

µ
∂

∂z

(
∂2w

∂x2
+

∂2w

∂y2
+

∂2w

∂z2

)
+

∂µ

∂x

{(
∂2u

∂x2
+

∂2u

∂y2
+

∂2u

∂z2

)
+

∂2u

∂x2
+

∂2v

∂y∂x
+

∂2w

∂z∂x

}
+

∂µ

∂y

{(
∂2v

∂x2
+

∂2v

∂y2
+

∂2v

∂z2

)
+

∂2u

∂y∂x
+

∂2v

∂y2
+

∂2w

∂z∂y

}
+

∂µ

∂z

{(
∂2w

∂x2
+

∂2w

∂y2
+

∂2w

∂z2

)
+

∂2u

∂z∂x
+

∂2v

∂z∂y
+

∂2w

∂z2

}
+

∂2µ

∂y∂x

(
∂u

∂y
+

∂v

∂x

)
+

∂2µ

∂z∂x

(
∂u

∂z
+

∂w

∂x

)
+

∂2µ

∂z∂y

(
∂v

∂z
+

∂w

∂y

)
+

∂2µ

∂x2

∂u

∂x
+

∂2µ

∂y2
∂v

∂y
+

∂2µ

∂z2
∂w

∂z

The equation may be more cleanly written using vector and tensor notation:

∇ · [∇ · (µ∇ · u)] = µ∇ ·
(
∇2u

)
+∇µ ·

[
∇2u+∇ · (∇u)T

]
+
〈
H (µ)T , ∇u

〉
F
(5.9)

where the last term is referred to as the Frobenius inner product (or Hilbert-Schmidt
inner product in broad context), which is defined as ⟨A, B⟩F = tr

{
AT B

}
.It is char-

acterised as “the trace of the product of two tensors, with the first tensor transposed,”
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or as “the summation of element-wise multiplication of two tensors”. H (µ) representes
the Hessian of µ.

The curl-curl identity is defined for the analysis of the first term in equation 5.9:

∇2u = ∇ (∇ · u)−∇× (∇× u) . (5.10)

Given that the curl operator consistently produces a solenoidal vector field, applying
the divergence to the aforementioned equation results in the equivalence:

∇ ·
(
∇2u

)
= ∇2 (∇ · u) (5.11)

The approximation of equation 5.9 is then given as:

∇ · [∇ · (µ∇ · u)] = 2µ∇2 (∇ · u) + 2∇µ · ∇2u+ 2∇2µ (∇ · u) , (5.12)

where the primary term is predominant and should be incorporated as the source term
for pressure to mitigate compressibility in extremely viscous fluids resulting from the
diffusive dispersion of velocity divergence.

Divergence of the divergence of the polymeric stress

Equation (5.5) introduces the ‘Laplacian of the polymeric–tensor trace’, which is as-
sumed as an appropriate approximation. The derivation of this assumption is explained
here, backed by observations in [126], and later validated using numerical experiment-
ing.

An arbitrary symmetric second–rank tensor in three dimensions is defined as 3x3 ma-
trix:

T =

 T11 T12 T13

T12 T21 T23

T13 T23 T33

 . (5.13)

In the field of viscoelastic fluid dynamics, all components of the matrix are contingent
upon spatial and temporal variables, Tij = f (x, t). The “divergence of the tensor
divergence”, ∇ · (∇ ·T), is a scalar:

∇ · (∇ ·T) =
∂2T11

∂x2
+

∂2T22

∂y2
+

∂2T33

∂z2
+ 2

∂2T12

∂x∂y
+ 2

∂2T13

∂x∂z
+ 2

∂2T23

∂y∂z
. (5.14)

Alternatively, the aforementioned statement (5.14) can be reformulated utilising the
tensor operation:

∇ · (∇ ·T) = ⟨H, T⟩F . (5.15)
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where the operation on the right-hand-side of equation (5.15) is known as the Frobenius
inner product, ⟨A, B⟩F = tr

{
A⊤B

}
. Formally, it is defined as “the trace of the

product of two tensors, where the first one is transposed”. On the other hand, to
understand the above, it is more appropriate to define it as “the sum of element-wise
multiplication of two tensors”. H is the Hessian operator, H = ∂2/ (∂xi∂xj).

Given that the aforementioned equation is challenging to interpret numerically, a sim-
plification in numerical modelling is required. The Hessian of a scalar is a symmetric
tensor, attributable to the symmetry of second derivatives, and is defined as the “trans-
pose of the Jacobian matrix of the gradient of a function,” H (f) = J (∇f)⊤. Moreover,
if the tensor T is based on a gradient of vector field, T = ∇v, where v = [u v w]⊤, then
T is defined as:

T =


∂u
∂x

∂u
∂y

∂u
∂z

∂v
∂x

∂v
∂y

∂v
∂z

∂w
∂x

∂w
∂y

∂w
∂z

. (5.16)

Consequently, the divergence of the tensor divergence is:

∇ · (∇ ·T) =

(
∂3u

∂x3
+

∂3u

∂y2∂x
+

∂3u

∂z2∂x

)
+

+

(
∂3v

∂y3
+

∂3v

∂y∂x2
+

∂3v

∂z2∂y

)
+

+

(
∂3w

∂z3
+

∂3w

∂z∂x2
+

∂3w

∂z∂y2

)
= ∇2

(
∂u

∂x
+

∂v

∂y
+

∂w

∂z

)
= ∇2 (∇ · v)

= ∇2 [tr (T)] . (5.17)

In essence, if the tensor originates from the gradient of a vector field, the div-div op-
eration on the tensor simplifies to the Laplacian of its trace. It is evident that the
expression is valid for T = (∇v)T , as well as for tensors derived from symmetrised
vector gradients, T = 1/2

[
∇v + (∇v)T

]
. Within the framework of the extra-stress

tensor, its trace tr (τ p) signifies the isotropic component of stress that influences vol-
umetric alterations in the material. It quantifies the typical stresses that indicate a
tendency for volumetric expansion or contraction under specific stress situations. In
summary, the pressure equation derives from the Laplacian of pressure, so it is logical
in a numerical setting to utilise (5.17) as the source term for pressure resulting from
fluid elasticity.
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5.1.2 Velocity equation

The second-order backward differencing formula (BDF2), utilised with varying time-
step sizes, is applied to discretise the Lagrangian derivative for velocity:

Du

Dt
=

1

δt

[(
1 + 2rt
1 + rt

)
un+1 − (1 + rt)un +

(
r2t

1 + rt

)
un−1

]
, (5.18)

where rt is the ratio of the current and previous time–step sizes, rt = tn/tn−1. The
momentum equation (3.33) incorporates the pressure field as explicit term, which is
obtained by solving the system of equations (5.1)–(5.2). Explicitly solving for the next
velocity un+1 by substituting equation (5.18) into the momentum equation (3.33) is
obtained by leaving the velocity term un+1, and the diffusion term, on the left-hand-
side while relegating all other terms (pressure gradient and viscoelasticity divergence)
on the right-hand-side:

un+1 = Cn−1un−1 + Cnun + Cn+1a, (5.19)

where a is the total acceleration.

On the other hand, let us look at the momentum equation of generalised Navier-Stokes
equations is defined as:

ρ
Du

Dt
− µ∇2u = 2E∇µ−∇p+ F ext (5.20)

Substituting discretisation of Du
Dt

into the momentum equation, we get:

ρ

δt

[(
1 + 2rt
1 + rt

)
un+1 − (1 + rt)un +

(
r2t

1 + rt

)
un−1

]
− µ∇2un+1 = (5.21)

= 2En∇µn −∇p+ F ext

First let’s multiply by δt/ρ to see the equation more clear:(
1 + 2rt
1 + rt

)
un+1 − (1 + rt)un +

(
r2t

1 + rt

)
un−1 − δt νn∇2un+1 = (5.22)

= δt

(
2E∇νn −

∇p

ρ
+ aext

)
where ν = µ/ρ is the kinematic viscosity, and aext is the external acceleration. Rear-
ranging unknowns to the lhs, and knowns to the rhs:(
1 + 2rt
1 + rt

)
un+1−δt νn∇2un+1 = (1 + rt)un−

(
r2t

1 + rt

)
un−1+δt

(
2E∇νn −

∇p

ρ
+ aext

)
(5.23)
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And dividing by the leading coefficient leads to:

un+1 − (δt νn)

(
1 + rt
1 + 2rt

)
∇2un+1 =

(1 + rt)
2

(1 + 2rt)
un −

(
r2t

1 + 2rt

)
un−1+ (5.24)

+δt

(
1 + rt
1 + 2rt

){
2E∇νn −

∇p

ρ
+ aext

}
i.e. using the more readable form, the final equation to obtain the velocity field is:

un+1 − CLνn∇2un+1 = Cnun + Cn−1un−1 + Cn+1

{
2E∇νn −

∇p

ρ
+ aext

}
(5.25)

where the coefficients are: CL = δt
(

1+rt
1+2rt

)
, Cn = (1+rt)

2

(1+2rt)
, Cn−1 = −

(
r2t

1+2rt

)
, Cn+1 =

δt
(

1+rt
1+2rt

)
. The momentum equation of generalised Navier-Stokes equations can also

be defined as:
ρ
Du

Dt
−∇ · (µ∇u) = (∇u)⊤∇µ−∇p+ F ext (5.26)

and using the same derivation as above, the discretized equation to obtain the velocity
field is:

un+1 − CL∇ · (νn∇un+1) = Cnun + Cn−1un−1+ (5.27)

+Cn+1

{
(∇un)

⊤∇νn −
∇p

ρ
+ aext

}
Conclusion is that the introduced equations are variations of the momentum equation
for generalized Navier-Stokes equations that are implemented in the LDD framework to
calculate the velocity field with variable viscosity, and other acceleration terms included
on the right–hand–side.

5.1.3 Advection step

In Lagrangian CFD methods, the fluid dynamics are analysed from a particle–centric
perspective. This approach involves tracking discrete fluid parcels as they advect and
carry their properties (such as temperature, etc.). The trajectory of each parcel is
computed by integrating its velocity over time, allowing the simulation to capture the
evolving flow patterns and interactions within the fluid. The first order derivative in
time describes the particle advection within the time step:

Dx

Dt
=

1

δt
(xn+1 − xn) (5.28)
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Figure 5.1: Comparison of the mesh-free (left) vs mesh (right) discretisations of the
fluid. The central node i is red, while neighbour nodes j ∈ N are blue. For
meshless discretisation, the neighbour nodes are in sphere of radius h.

so the equation (3.35) may be explicitly solved as:

xn+1 = xn + un+1δt. (5.29)

The numerical particle is explicitly advected in time using the newly acquired veloc-
ity un+1. In a discrete numerical framework, advection consistently yields compressive
results [127] due to: the method’s order (truncation), inadequate convergence, floating-
point inaccuracies, or the potential for adjacent streamlines to collide or diverge due to
a substantial discrete value of δt. Owing to the intrinsic characteristics of Lagrangian
advection, all particles are rearranged post-advection by the PBD method, which is
both iterative and unconditionally stable [7, 128]. A semi-implicit strategy for advec-
tion is devised utilising explicit movement and implicit reordering.

The variable time-step size in the numerical simulation is determined by the Lagrangian
CFL (LCFL) condition number, described as follows:

LCFL = δt |∇u|∞ . (5.30)

The condition limits the time-step size according to the maximum strain in the flow,
namely the L-infinity norm. |∇u|∞, which is independent of the discretisation size, in
contrast to the classical Eulerian CFL conditions. The constraint defined as LCFL < 1

ensures that characteristic curves will not meet inside the time step.
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Figure 5.2: Plot of equation 5.31, showing how distance between points influences in-
teraction contribution. The scale is unimportant, as all interactions are
renormalised.

5.2 Lagrangian differencing

The split-scheme defining the pressure–velocity–advection steps can be resolved util-
ising any Lagrangian approach that incorporates consistent spatial operators. In this
thesis, Lagrangian Differencing Dynamics (LDD) is extended to simulate viscoplas-
tic and viscoelastic non-Newtonian flows, dute to its capacity to achieve second-order
precision [91, 7], and due to its performance and extensibility.

LDD represents the computational domain as a point cloud, eliminating the need for
topological information. In discrete equations, the Lagrangian particle i is defining the
central particle, while j is its neighbour particle from the set neighbouring particles N .
For simplicity of equations, the subscript ij defines the difference between values of
two neighbouring particles, □ij = □j −□i. Particle’s i neighbours j ∈ N are searched
around the location xi to be within the compact radius h, i.e. 0 < |xij| ≤ h, ∀ j ∈ N .
For the incompressible flow, closest neighbours are organised to be distanced close to
some initial particle spacing, ∆, and the first ring of neighbours around the particle
i is taken for the discretisation of spatial operators [91]. So the recommended values
of the compact radius are 1.3∆ < h < 2.5∆, and of h ≈ 1.7∆ is on the safe side to
capture full ring of closest neighbours. Based on the incompressibility assumption and
h < 2.5∆, the weighting function describes how much one neighbour contributes to
interaction between particles, based on distance xij between two neighbours:

Wij =

(
1− |xij|

hmax

)3

. (5.31)

The defined fluid domain is represented without topological information, using a cloud
of points described by set Ω. At a given time, each point i ∈ Ω at location xi (t) in a
specific time instant t carries some fluid properties. Each point i interacts with a set of
neighbour points, N , which are found in the sphere with radius h, as shown in Figure
5.1. A symmetric and positive weighting function W (r, h) is used to evaluate the
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strength of interaction between points based on distance between them, r = ∥xi − xj∥.
Unlike in SPH, where the smoothing function must fulfill the quadrature requirements,
in the LDD method the weighting function is used only for weighting of interactions,
and therefore, it can take an arbitrary shape. Values of a continuous function f (x)

may be approximated anywhere between nodes by using Shepard’s formula:

⟨f (x)⟩ =
∑

j∈N Wj fj∑
j∈N Wj

, (5.32)

where ⟨⟩ indicates a discrete version of some expression, fj ≡ f (xj) is introduced for
compactness, and Wj ≡ W (∥x− xj∥ , h) indicates the weight of the neighbor node j

in the neighborhood. A renormalization tensor Bi for the discrete gradient is defined
as [91]:

Bi =

(∑
j∈N

Wij xij x
T
ij

)−1

. (5.33)

oi =
∑
j∈N

Wij xij. (5.34)

which are calculated each time step, for each point’s neighbourhood. Since the Navier-
Stokes equations are solved in strong form, the equations are directly discretised by
substituting the discrete LDD spatial operators. The first–order derivatives discretised
in LDD context are defined as follows:

∇fi =
∑
j∈N

Wij Bixij fij, (5.35)

∇f i =
∑
j∈N

Wij Bixij f
⊤
ij, (5.36)

∇ · f i =
∑
j∈N

Wij Bixij · f ij, (5.37)

∇ · Fi =
∑
j∈N

Fij (WijBixij) , (5.38)

where the term WijBixij can be understood as a component of the Hamilton (nabla or
del) operator, It is referred to as component, since the complete result is obtained by
summing separate neighbour weights ∀ j ∈ N . The Laplacian of a scalar field (results
in scalar):

∇2fi = 2d

∑
j∈N Lijfij∑

j∈N Lij |xij|2
, (5.39)

where Lij ≡ Wij (1− xij ·Bioi). Equation (5.39) has the same formulation for a
vector function, f . Similarly, the Laplacian with a variable–coefficient multiplier may
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be defined as:

∇ · (ϕ∇f)i = d

∑
j∈N Lij (ϕi + ϕj) fij∑

j∈N Lij |xij|2
. (5.40)

By using equation (5.33), the discrete approximation of the gradient is obtained using
the expression:

⟨∇f⟩i = Bi

∑
j∈N

Wij fij xij. (5.41)

The derivation of this expression for the gradient is given in [91], and the convergence
theorems are presented in [129]. The method is show to be consistent up to second-
order, and robust on highly irregular arrangements of nodes.

An accurate discrete expression for the Laplacian used in this study belongs to a
class of renormalized Laplacian operators, introduced in [91], which were validated on
particularly irregular neighborhood arrangements. The discrete Laplacian is defined
as: 〈

∇2f
〉
i
= 2d

∑
j∈N

Wij fij (1− xij ·Bioi)∑
j∈N

Wij ∥xij∥2 (1− xij ·Bioi)
, (5.42)

where oi is the offset vector of the node i:

oi =
∑
j∈N

Wij xij, (5.43)

which points from xi to the point where the arrangement the neighborhood dominates.
It was shown that renormalization enhances the operator when approximating a scalar
field Laplacian, and that it is responsible for reaching second–order accuracy when
solving Poisson problems, while original SPH and MPS formulations yield first–order
accuracy. This operator is a crucial ingredient to discretize the pressure and velocity
equations.

5.3 Algorithm overview

In the discrete Lagrangian framework, the split-step scheme is defined by its inde-
pendent pressure-velocity-advection steps, which are addressed once during each time
increment. This naturally non-iterative method represents the optimal performance to
solve the Navier-Stokes equations. Nonetheless, it is important to acknowledge that
the technique cannot enforce perfect convergence, owing to the lack of many iterations
per time step, as well as additional faults such as truncation order, among others.
Therefore, it is essential to regulate the time stepping to guarantee global convergence
and preserve system stability in the discrete framework. A single time step comprises
the following sub-steps:
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1. Advection step:

a) Move bodies from either imposed motion, or by using integrated fluid forces
and torques.

b) Move meshless points along their streamlines.

c) Reorder the new positions so that more regular organisation is achieved, as
described.

d) Interpolate momentum on reordered positions (if needed).

2. Generation step:

a) Generate inlet particles, and assign their initial conditions.

b) Generate boundary particles on walls by projecting closest fluid particles
onto walls.

3. Preparation step:

a) Prepare interactions between neighbours (equations (5.33) and (5.43)).

b) Detect free surface points, as explained in [7].

4. Pressure equation:

a) Prepare the RHS of the pressure equation.

b) Solve the pressure equation.

c) Calculate the pressure gradient.

5. Velocity equation:

a) Prepare the RHS of the velocity equation.

b) Solve for velocity.

c) Calculate the velocity gradient.

6. Updates based on the solution:

a) Calculate variable viscosity.

b) Calculate viscoelasticity tensor.

c) Calculate fluid forces and torques on the bodies.

d) Calculate the next allowable time-step size.
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This chapter is dedicated to the rigorous verification and validation of the extended
Lagrangian Differencing Dynamics (LDD) method. The primary objective is to sys-
tematically assess its accuracy, stability, and capability to simulate the complex rhe-
ological behaviors of non-Newtonian fluids. The validation process is structured to
address the simulation of time-independent viscoplastic flows and time-dependent vis-
coelastic flows. A series of well-established benchmark problems are simulated and
the numerical results obtained with the LDD method are quantitatively and qualita-
tively compared against a combination of experimental data, analytical solutions, and
previously published numerical results from the literature.

The first part of the validation process focuses on the LDD method’s ability to model
viscoplastic materials, which are characterized by a yield stress and shear-rate-dependent
viscosity. The following benchmark cases are used to assess the implementation of the
generalized Newtonian fluid models:

• Lid-driven cavity flows : used to verify the method’s accuracy in capturing com-
plex recirculation patterns, handling sharp velocity gradients, and performing
robustly in geometries with singularities.

• Dam break: to test the method’s capability to simulate transient, free-surface
flows governed by a yield stress; critical for validating the correct prediction of
both the initial collapse and the final arrested shape of the material, with results
compared directly against experimental data.

• Fresh concrete slump test : a widely used engineering test to validate the model
against the behavior of a real-world, complex industrial material, the evolution
of the slump and spread is compared with experimental findings.

• Dam break with an elastic gate: to evaluate the method’s versatility by coupling
the viscoplastic fluid simulation with a Finite Element Method (FEM) solver
to model fluid-structure interaction (FSI), demonstrating its potential for multi-
physics applications.

The second part of the validation process assesses the extension of the LDD method for
simulating viscoelastic flows, specifically through the implementation of the Oldroyd-B
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constitutive model. These benchmarks are chosen to challenge the solver’s ability to
capture phenomena arising from fluid memory and elasticity:

• Lid-driven cavity flow: revisited in the viscoelastic context, to test the method’s
stability at high Weissenberg numbers and its ability to capture key features such
as the upstream shift of the primary vortex and the formation of stress-induced
secondary eddies.

• Droplet impact: used to validate the model’s handling of dynamic interfaces, large
deformations, and the characteristic elastic rebound of a viscoelastic droplet upon
impact with a solid surface.

• 4:1 planar contraction: a classic and challenging benchmark for viscoelastic flows,
used to evaluate the prediction of strong extensional stresses, vortex dynamics
near the contraction, and the overall stability of the method in a flow with sig-
nificant geometric and stress singularities.

• Die swelling: to test the method’s ability to predict the extrudate swell phe-
nomenon, a direct consequence of stress relaxation as the fluid exits the die.

6.1 Viscoplastic fluids

6.1.1 Square lid-driven cavity flow

Lid-driven cavity tests serve as widely recognised benchmarks for evaluating newly
developed CFD solvers and methodologies [130]. The straightforward geometry of
this test produces a variety of complex and distinct flow types, thereby enhancing
the understanding of industrial processes within closed recirculating regions. Strong
extension is observed near the lid edges, while the rotational flow is evident in the
centre of the recirculating region. The moving lid interacts with the stationary wall
as a result of idealisation, leading to a discontinuous velocity profile. Obtaining the
complete range of kinematics and the rapid variations in pressure and stress near the
corners is more challenging than it initially appears. A suitable method for calculating
convection-dominated momentum transfer is essential. Due to the aforementioned
factors, lid-driven flow within a cavity serves as an effective preliminary experiment for
validating flow characteristics across a range of Reynolds numbers and flow properties.

The two-dimensional steady lid-driven cavity problem is utilised to simulate Casson
fluid flow. The validation of the LDD numerical simulations is performed by comparing
them with the simulations conducted by [38]. The cavity in defined using dimensionless
1 × 1 square, and the lid is steadily moving using dimensionless horizontal speed of
ulid = 1. The no–slip wall–boundary condition is applied at the moving lid geometry
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Figure 6.1: Velocity contour plot and streamlines plotted for the flow of Casson fluid
in a square cavity, at Re = 100 and Bn = 0.01.

and at walls. Two resolutions of the point cloud were evaluated. The time step used
for both tested simulations was δt = 10−3, and the average calculation time for a single
time step was 12ms on a modern GPU (RTX 3080). Ten seconds of physical time was
simulated. The Reynolds number considered is ReCA = 100 and the Bingham number
Bn = 0.01, where the Reynolds number and Bingham number are defined respectively
as:

Re =
ρU∞l

µ∞
, (6.1)

Bn =
τyl

µ∞U∞
, (6.2)

where ρ is the fluid density, U∞ is the velocity at infinite shear rate, l is the reference
length, µ∞ is the dynamic viscosity at infinite shear rate.

Figure 6.1 illustrates the velocity magnitude and associated streamlines. The results
obtained are in strong agreement with those reported by [38]. The streamline pattern
that is plotted in Figure 6.1 shows that the centre of the primary vortex has been
successfully simulated and predicted, while the secondary vortices were also simulated
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Figure 6.2: The velocity distribution along the horizontal and vertical centerlines of the
square lid–driven cavity test.

in the bottom corners of the square cavity. Figure 6.2 illustrates the velocity profiles
that are orientated perpendicular to both the vertical and horizontal centerlines of the
cavity. Two simulations are conducted with varying initial resolutions of 100 × 100

and 200× 200, to demonstrate the convergence of the method. The horizontal velocity
component for the finer resolution is in superb agreement with the results obtained
by FEM. The coarser resolution has yielded somewhat underestimated values, but it
demonstrates a general agreement with the reference results. The vertical velocity
component that plotted along the horizontal centerline of the cavity for is in very
good agreement with FEM, for both resolutions. The sole discrepancy is observed at
the highest and lowest peaks, where the vertical component of the velocity exhibited
marginally lower absolute values, despite demonstrating strong agreement within other
regions.

6.1.2 Skewed lid-driven cavity flow

The Power Law viscosity model is tested for a fluid circulating in a lid-driven skewed
cavity flow. [131] was the first to publish results for skewed angles α = 30° and 45° for
Newtonian fluids. [132] compared their results with the published results and extended
the investigation to various skew angles. An experiment of the skewed cavity using the
Power Law, reported by [132], is reproduced in this paper using the LDD method and
the results are compared.

The circulation pattern and vortex formation exhibit a strong dependence on the
Reynolds number across various rheological behaviours. Consequently, a Reynolds
number of 500 was selected for simulation purposes to demonstrate the stability and
robustness of the LDD method. The Power Law index was set to n = 1.5, the square
1×1 cavity was skewed by using angle of α = 60°. As in the previous test casem, the lid
is steadily moving with a dimensionless velocity of ulid = 1. The no-slip wall–boundary
condition is applied to the lid and wall boundaries. Two initial resolutions of 100×100
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Figure 6.3: Velocity contour plot and streamlines plotted for the flow of Power law fluid
in a skewed cavity, for Re = 500 and n = 1.5.

Figure 6.4: The velocity distribution along the horizontal and vertical centerlines of the
skewed lid–driven cavity test.

and 200 × 200 points were tested. Like before, the time step used for simulations is
δt = 10−3, and calculation of a step took 26ms in average. Twenty seconds of physical
time were simulated until a steady state was achieved.

The streamlines depicted in Figure 6.3 align closely with the reference data provided
by [132]. The vortices’ positions are accurately represented, with the vortex in the
lower-right corner being more distinctly illustrated in the LDD method compared to
the FVM. Figure 6.4 presents a comparison of the simulated results for the u and
v components of velocity along the vertical and horizontal centerlines of the cavity
against the reference data. The plotted curves for the u-component of the velocity
exhibit a high degree of alignment, whereas the v-component of the velocity shows
minor discrepancies up to the height of Y = 0.65. The results obtained demonstrate
a strong correlation, confirming the method’s effectiveness in simulating viscoplastic,
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Figure 6.5: Dam break snapshots for time instances t = 0.1, 0.3, 0.6, 1.0 s, with the
plotted velocity magnitude.

Figure 6.6: Results of dam–breaking front position; comparison of numerical simula-
tions with experimental data.

non-Newtonian, Power Law fluids.

6.1.3 Dam break of a Bingham fluid

A dam break test is performed in accordance with the experimental parameters spec-
ified by [133]. A non-Newtonian fluid is characterised by a combination of water and
clay, which is stored in a reservoir and subsequently released into a channel measuring
2 meters in length and 0.1 meters in height at the outset. The mixture density of
water and mud is ρ = 1200 kg/m3, the Bingham yield stress is τB = 25.0Pa and the
viscosity is µB = 25.0Ns/m2. The no-slip wall-boundary condition is imposed along
the geometry of the channel walls. Snapshots of the point configuration are captured
at time intervals of t = 0.1, 0.3, 0.6, and 1.0 seconds, as illustrated in Figure 6.5.
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Figure 6.7: The evolution of mass front position for simulations with two points counts
and time step sizes for the dam break test, compared to the experimental
data.

The outcomes of the LDD method are juxtaposed with the experimental data and
alternative numerical methods as illustrated in Figure 6.6. Shao et al. [66] performed
the dam-break test using the Incompressible SPH (ISPH) method. In contrast, [46]
evaluated a Lagrangian formulation for weakly compressible fluids through an explicit
solver based on PFEM. The simulated flow aligns both visually and numerically with
the experimental data. The unique features of the flow are identified. At the initiation
of flow, the free-standing end of the fluid column commences movement, while the up-
per free corner begins to collapse. As the fluid flows, its height subsequently decreases,
reaching peak velocity at the flow front. At the final stage, the flow exhibits charac-
teristics of creeping flow, resulting in a surface profile that remains largely unchanged,
aligning with experimental observations.

From time instance t = 0.0 ÷ 0.2 s, all the numerical methods exhibit discrepancies
that can be attributed to not having vertical wall in a channel, which that releases the
fluid to flow. The numerical results obtained from the LDD method demonstrate a
closer alignment with experimental results in the time interval of t = 0.2÷ 0.8 s times
compared to other numerical methods. From t = 0.8 ÷ 1.2 s, both the FEM method
[46] and the LDD method both show a good fit with experimental data. The results
obtained through the LDD method demonstrate the capability of this novel approach
to effectively simulate Bingham-type flows and yield realistic outcomes.

A convergence study is conducted utilising two simulations characterized with varying
resolutions and time step sizes. The first simulation utilised 200000 points (∆ = 1mm)
and the second simulation utilised 50000 points (∆ = 2mm). For the both simulations,
the size of the time steps were δt = 10−3 and δt = 10−4. The comparison of the
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tracked mass front position, obtained through numerical and experimental methods,
is presented in Table 6.1. The results are also displayed in Figure 6.7. In the case of
a domain comprising 50000 points, the average calculation time for a single time step
took 35 ms, while for the domain comprising 200000 points and it took 200 ms. The
convergence study results indicate that a domain of 200000 points and a time step of
δt = 10−4 yield optimal outcomes, which are utilised for the dam break comparison.

Time
(s)

Mass front (m),
exp.

Mass front (m),
∆ = 1mm

Mass front (m),
∆ = 2mm

δt = 10−3 δt = 10−4 δt = 10−3 δt = 10−4

0.09 0.103 0.030 0.048 0.043 0.044
0.23 0.198 0.185 0.190 0.195 0.191
0.38 0.297 0.328 0.304 0.314 0.308
0.56 0.399 0.427 0.414 0.396 0.407
0.74 0.499 0.508 0.484 0.467 0.486
1.14 0.596 0.705 0.628 0.621 0.625

Table 6.1: Dam–break mass–front position determined through numerical and experi-
mental methods at six distinct time instances.

6.1.4 Fresh concrete slump test

The slump test serves as a standard laboratory experiment for assessing the workability
of fresh concrete. The slump test will be conducted again to validate the method in
three dimensions. Franci and Zhang [48] presented a comprehensive analysis contrast-
ing experimental data with corresponding numerical simulations.

The conical container is filled with concrete, and the subsequent evolution of the form is
assessed following the removal of the container. The spread and slump of the evolving
concrete are quantified, specifically the fluid height and diameter. The test concludes
when there is an absence of fluid movement. The Abram’s test, as defined in the
literature [134] is simulated using a single-phase Bingham model. The geometrical and
material data are presented in Table 6.2. The computation was performed utilising
50000 points within the domain, with an average time step of 55 ms on the modern
GPU. The time step value was established at δt = 10−3 s, and 40 s of simulating
physical time was conducted. To evaluate the stability of the solver, the experiment was
conducted with larger time steps, reaching δt = 10−2 s, which demonstrated stability
throughout the testing process.

H0,m D0,m d0,m ρ, kg/m3 µ, Pa · s τ0, Pa
0.3 0.2 0.1 2200 255 32

Table 6.2: The data of the Abram’s slump test.
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Figure 6.8: The progression of diameter in the Abram slump test; a comparison of
numerical simulations with experimental data.

The calculation of cement spread is performed with high precision, as illustrated in
Figure 6.8. Throughout the time interval t = 0 to 10 seconds, both PFEM and LDD
numerical simulations exhibited a comparable progression of the diameter. The di-
ameter values for those time instances exceed those observed in the experiment. At
t = 10.0 s, the outcomes of the LDD and PFEM begin to diverge. The measurements
obtained from both methods exhibit a smaller diameter compared to the experimental
results; however, the LDD method is approaching the experimental outcomes asymp-
totically. At time instance t = 40.0 s, the LDD method achieves the experimentally
obtained diameter, whereas the PFEM method continues to indicate a lower value.
The simulation snapshots illustrated in Figure 6.9 depict the flow results for three spe-
cific instances, t = 0.5, 5.0, 40.0 s. The axisymmetric flow exhibits maximum velocity
at the apex of the free surface, occurring immediately following the removal of the
container. As the top descends gradually, the diameter changes, resulting in a decrease
in velocity. Upon the complete collapse of the cone, the diameter gradually expands
until the final moment when the fluid exhibits negligible movement. The results align
with those presented in [48].

6.1.5 Dam break with elastic gate

The coupling scheme allows for coupling arbitrary structural solvers, which expose an
Application Programming Interface (API) that enables sharing structure deformation
during solving, and imposing forces to structure elements or nodes. In this thesis, a
validated open–source structural solver named CalculiX is employed, which is based
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Figure 6.9: Simulation snapshots for three time instances t = 0.5, 5.0, 40.0 s with
plotted velocity magnitudes.
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Figure 6.10: Peer-to-peer coupling with automatic temporal and spatial interpolation,
for participant solvers Rhoxyz and CalculiX.

on the FEM [135]. Moreover, an open source coupling framework named preCICE
(PREcise Code Interaction Coupling Environment) is used for bidirectional partitioned
coupling of the structure and flow solvers [136]. The coupling scheme is schematically
drawn in Figure 6.10, which renders how preCICE provides communication tools for
for multi-physics simulation. The important ingredients for enabling massively parallel
coupled simulations are: mapping of data between non-matching grids, peer-to-peer
communication between solver processes, iterative methods for solving interface equa-
tions. In this study, the serial and explicit coupling scheme is used. At the start of
each time step the solvers synchronise (wait for each other to reach the same point),
seeing that the peer-to-peer communication channel must exchange data between the
coupled solvers. The flow solver obtains and sends fluid force for each node of the
patch mesh, while the structural solver sends deformations of the structure nodes. As
implied above, non-matching interface discretisations of two solvers do not pose any
issues; forces are conservatively interpolated from one solver to another performed by
preCICE. Therefore, during this exchange the fluid solver obtains deformations of the
structure nodes, i.e. deflections and velocity vectors of moved nodes, which are are
used for imposing boundary conditions in the flow solver. Meanwhile, using the same
communication channel the structural solver obtains fluid forces on each node of the
structure mesh. This benchmark involves a structure composed of an elastic isotropic
material, which is discretised utilising eight-node brick elements (C3D8). To facilitate
coupling from the structural solver perspective, it is essential to establish a defined set
of nodes that serve as an interface for the bidirectional transfer of information, such as
nodes located on the gate surface.

In this section an experiment conducted by Antoci et al. [137] is reproduced. The
experiment resembles to typical dam-breaking problem, but the gate is not rigid nor
movable, but instead it is elastic and deformable. The rubber gate is clamped along
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its upper side to the rigid wall, and it deforms when subjected to fluid forces behind it.
The tank space is filled with fluid column of length A = 100 mm and height H = 140

mm, while the rubber gate is supported by an rigid obstacle and its lower end touches
the floor. The gate has thickness of s = 5 mm and height of L = 79 mm. The rubber
gate is modeled using a elastic isotropic material with density ρgate = 1100 kg/m3, and
Young’s modulus E = 12 MPa. Since some uncertainty occurs durting estimation of
the Young modulus for rubber, future work will include proper rubber hyper-elastic
properties. For the validation, the tank was filled with water, ρ = 1000 kg/m3 and
µ = 10−3 Pa·s, made of 56000 fluid points with initial point spacing 0.5 mm. The
constant time-step was δt = 2 · 10−4 s, and the calculation of a time-step took 40ms

in average on a RTX 2080Ti GPU. The time-step reported in [137] for 6000 fluid SPH
particles was δt = 8 · 10−6, which emphasises the robustness of the implicit solving.
Moreover, larger stable time-step values are expected for the implicit partitioned type
of coupling that is available in preCICE [136], which will be assessed in future work.

The obstacle that supports the rubber gate is suddenly removed, which allows the hy-
drostatic condition to initially deform the lower end of the elastic plate, and this allows
the water to flow under it. The experimental analysis indicated that the resultant flow
and plate deformation can be examined as a two-dimensional phenomenon. Therefore
two-dimensional flow is simulated, while the fluid forces are imposed on the gate mod-
eled by one column of 28 brick (C3D8) elements. The solution captured during the
simulation is shown in Figure 6.11, and compared to the photographs taken during the
experiment. The evolution of the gate deformation and water level change is similar
between the compared images. Furthermore, the free-surface shape (local elevation)
evolution due to pressure gradients from the concentrated outflow is also properly sim-
ulated. The results indicate that precise prediction of the displacement of the elastic
structure under fluid pressure and the consequent fluid flow may be achieved utilising
the LDD method in conjunction with a FEM solver. Further work is required to in-
corporate authentic rubber-like behaviour of the gate and to evaluate the drawbacks
of the explicit coupling method.

In the second numerical experiment, the tank was filled with a Power Law fluid. The
shear thickening effect of the flow was employed by setting the flow-behaviour index
n = 2 and the flow-consistency index k = 10 Pa·s2. The same initial spacing and time
step was used, as defined in the text above. The solution captured during the simulation
is shown in Figure 6.12, which renders the pressure field and effective-viscosity field
as contour plots. Local maxima of the effective-viscosity scalar field are adequately
reproduced at locations with high pressure gradient that generated significant velocity
gradient. Some local deficiencies may be seen at the free surface, which will be assessed
in future work.
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Figure 6.11: Simulation of a dam break for a rubber gate and water, where the numer-
ical results are compared to the experiment photographs.

6.2 Viscoelastic fluids

6.2.1 Lid-driven cavity flow

The lid-driven cavity benchmark serves a critical role in the assessment of viscoelastic
flows, demonstrating complex flow behaviours including non-linear velocity profiles,
vortical structures, and the emergence of elastic instabilities [1, 138, 5, 139]. The lid-
driven cavity configuration establishes an enclosed environment where intricate flow
patterns can emerge, facilitating a comprehensive evaluation of the efficacy of a simu-
lation method in representing these phenomena. Viscoelastic fluids often demonstrate
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Figure 6.12: Simulation of a dam break for a rubber gate and Power Law fluid with
n = 2 and µ0 = 10 Pa·s, where the numerical results show the pressure
field and corresponding effective–viscosity field.

shear-thinning behaviour, characterised by a reduction in viscosity with an increase in
shear rate. Variable shear rates within the lid-driven cavity facilitate the assessment
of the accuracy of a simulation method in representing this non-Newtonian behaviour.
The standard mandates recirculation zones where the flow direction is inverted. Due
to its elasticity, viscoelastic fluids can exhibit modified or enhanced recirculation. Pre-
cisely simulating the dimensions, configuration, and dynamics of these zones is essential
for evaluating the accuracy of a simulation technique in representing viscoelastic phe-
nomena. Despite its uncomplicated geometry, this problem is considered very difficult
to resolve, especially at elevated Weissenberg numbers, as the flow demonstrates dis-
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Figure 6.13: Contour plot of the instantaneous velocity magnitude with streamlines
(left image) and the trace of the extra–stress tensor (right image), for the
lid–driven cavity flow simulation, Wi = 3 and Re = 5 · 10−4.

tinct attributes that amalgamate shear and extensional deformations.

The LDD was used to solve a benchmark test, lid-driven cavity flow. A square geometry
representing the cavity, with a unit length L = 1, is filled with fluid. The density of
the fluid is set to ρ = 1, and the maximum velocity of the lid is U = 1. A relatively
high Weissenberg number for the simulation [140] is chosen as Wi = λU/L = 3, while
a constant retardation ratio is applied β = 1/2. By setting the Reynolds number to a
negligible value, Re = ρUL/µ = 5 · 10−4, the flow is conceptualized as a creeping flow.
Near the sliding lid, the extensional rate reaches high values [141]. Because the cavity is
a closed system without inlets and outlets, recirculating material accumulates the extra-
stress quicker than it relaxes [16]. The flow may not achieve a steady-state solution, and
thus show elastic instabilities. Numerically, the modeling of the viscoelastic lid-driven
cavity flow at high Weissenberg numbers is as difficult as its Newtonian equivalent
at high Reynolds numbers [138, 141]. The corner singularities may be treated by
controlled amount of leakage [138] or by modifying the lid velocity profile [16]. Similar
to [16], in this study the regularization is applied to the tangential velocity profile of the
lid to eliminate the stress singularity at the corners. The profile of the lid’s tangential
velocity imposed as:

ux (x, t) = 16x2 (1− x)2 [0.5 + tanh (8 (t− 0.5)) /2]U, x ϵ [0, 1] ,

where the hyperbolic tangent moderates the lid’s acceleration, but the tangential veloc-
ity is exponentially scaled away from the corners. Consequently, the stagnation points
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Figure 6.14: The horizontal velocity profile along x = 0.5, and vertical velocity profile
along y = 0.75, for the lid–driven cavity flow simulation, Wi = 3 and
Re = 5 · 10−4.

located at the corners remain impervious to any deformation rate, thereby preventing
the development of stress gradients that could escalate rapidly.

In order to maintain consistency with the discretizations of the cited results [16, 77,
140], the initial point cloud was created as a 100x100 grid, resulting in an initial point
spacing of ∆ = 0.01. The outcomes presented in Figure 6.13 are juxtaposed with
the research [140] and [16], which proposed a stream-function derived from the log-
conformation formulation [77] for incompressible viscoelastic flows, to guarantee the
positive-definiteness of the conformation tensor and to tackle the challenges associ-
ated with high Weissenberg numbers. The simulation results effectively demonstrated
the upstream displacement of the principal re-circulation vortex, indicating that vis-
coelasticity has disrupted the symmetry observed in investigations involving Newtonian
creeping flow. The small corner eddies are also generated at the base of the cavity.
In reality, at the bottom corners there is an infinite series of vortices, diminishing in
size and strength as the corner is approached [138]. Comparing the velocity magnitude
data depicted in Figure 6.13 with those in [140] reveals that the asymmetry of the
velocity within the cavity is well predicted. A distinctive aspect of this benchmark is
the upstream deformation of streamlines in the upper-right corner, namely the bent
streamlines resulting from the pronounced gradient of the extra stress depicted in the
right image of Figure 6.13. This region becomes unstable rapidly if the tangential ve-
locity profile of the lid is not standardised. As a result, the velocity magnitude near the
lid exhibits greater gradients at the downstream corner than in the upstream region.
The precision of the vortex centre and the derived velocity field is illustrated in Figure
6.14, which presents the simulated velocity profiles for both horizontal and vertical
sections, compared to those from [16, 77]. The results derived from the LDD approach
indicate an increase in the vertical velocity profile adjacent to the right wall, a finding
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corroborated by [16] but not in [16]. The increase in velocity magnitude is also evident
from the contours of the velocity magnitude, attributed to the rise in excess stress,
as illustrated in Figure 6.13. The peaks and general configuration of the graphs are
well synchronised. The LDD solution demonstrates marginally sharper gradients in
the vertical velocity profile, which will be examined next.

6.2.2 Droplet impact

This section analyses the impact of a three-dimensional viscoelastic fluid droplet strik-
ing a hard plate. Comprehending droplet impact dynamics is crucial across various
domains, including inkjet printing, spray coating, and medicinal applications like drug
delivery. Droplet impact entails complex interactions between a viscoelastic fluid and
a solid substrate. Upon impact, viscoelastic fluids demonstrate deformation, elonga-
tion, and fragmentation, complicating the proper modelling of the fluid’s response to
external forces through simulation approaches. The simulation commences with a fluid
droplet represented as a sphere with a diameter of D0 = 20 mm, situated 40 mm above
the rigid plate. The droplet has an initial falling velocity V0 = 1 m/s, and is let to fall
down under the Earth gravity conditions g = 9.81 m/s2, resulting in Froude number
at impact Fn = 2.26. The density of the fluid is ρ = 1000 kg/m3, and the Oldroyd-B
parameters are chosen as µ = 4 Pa·s, λ1 = 0.02 s and λ2 = 0.002 s. This results in
Re = 5, β = 0.1, and Wi = 1. The relaxation time governs the elastic reaction of
the droplet upon impact, whereas viscosity influences the diffusion of advection and
elasticity, as well as the droplet’s ultimate shape.

Two resolutions of the droplet were examined, with beginning point spacings of ∆ =

0.4 mm and ∆ = 0.25 mm, resulting in 60,000 and 250,000 fluid Lagrangian points,
respectively. The progression of the coarser droplet simulation is depicted in Figure
6.15, where the hitting droplet is bisected to examine the viscoelastic effects. The
velocity field’s magnitude may clarify the evolution of the droplet shape. Upon collision,
the droplet experiences vertical compression and horizontal elongation, as illustrated in
the initial three photos in Figure 6.15. Unlike Newtonian flows, at maximal compression
and horizontal expansion of the droplet, the volume is concentrated near the outside
of the droplet. The energy shift from the droplet’s centre is illustrated in the fourth
and fifth images in Figure 6.15. Ultimately, the extended form of the droplet reverts
to its final oval configuration. The progression of the droplet diameter is marked by
quick oscillations, oscillating between local maxima and minima until it ultimately
stabilises at an intermediate value. This is shown in Figure 6.16, and the results
of two simulations performed using the proposed method are compared to numerical
results by [11] and [142]. The results of this investigation corroborate the conclusions
of [11, 142], so further validating the proposed methodology. The gradient and apex
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Figure 6.15: Evolution of droplet deformation during impact, illustrated with velocity
magnitude. The simulation with point spacing ∆ = 0.4 mm demonstrates
the solver’s ability to replicate viscoelastic effects at coarser point cloud
resolutions.

of the diameter elongation closely resemble the findings in [142]. Nonetheless, one
discrepancy is that the local minimum peak in the simulations is not as pronounced as
those observed in the references. The discrepancy is presumably due to the application
of the no-slip boundary condition for sliding free-surface locations along the plate,
which impedes the droplet’s compression following elongation. Additional inquiry is
required to validate this hypothesis. In contrast to [11] and other SPH methodologies,
no tensile instabilities or fracture phenomena were observed.

6.2.3 4:1 Planar contraction

The ’4:1 planar contraction’ problem serves as a critical benchmark for viscoelastic
flow solvers in computational fluid dynamics, especially in the context of viscoelastic
fluid dynamics. This design, characterised by an abrupt reduction of the flow channel
from a broader to a narrower dimension, creates a complex flow scenario beneficial in
polymer processing and inkjet printing [143]. This benchmark is crucial as it discusses
and evaluates the solver’s capacity to accurately represent the detailed behavior of vis-
coelastic fluids during abrupt geometric alterations. Extrusion is a prevalent polymer
fabrication technique for producing elongated, uniform components. A die melts and
molds plastic into the specified cross-sectional form. Material extruded through the
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Figure 6.16: Analysis of the simulated evolution of viscoelastic–droplet diameter upon
the impact.

die expands upon exit due to the reorganization of flow patterns. The flow shifts from
parabolic profiles within the die, limited by the walls, to a uniform profile outside the
die, where the free surfaces achieve equilibrium — a phenomenon known as ’extrudate
swelling’. Swelling may induce distortions in the extrudates, resulting in the forma-
tion of non-axisymmetric profiles. Flow disturbances impede the efficiency of polymer
extrusion at elevated extrusion velocities. This benchmark test evaluates the solver’s
numerical stability and robustness, as steep velocity gradients and high strain rates in
the contraction zone may lead to convergence or numerical diffusion problems.

The velocity field findings for the two simulations, Wi = 5 and Wi = 10, are pre-
sented in Figure 6.18. In the simulated instance of Wi = 5, a complicated pattern
featuring two merged recirculation zones is evident. The diminutive vortex is revolving
around the contraction corner, but the larger vortex extends from the smaller vortex
to the adjacent wall. The post-processing artifacts evident at the recirculation corner
in Figure 6.18 arise from the Lagrangian character of the flow, making it challenging
to record the streamlines of mesh-free points that are advecting at near-zero velocity.
The corner–vortex length for the steady solution for Wi = 5 is measured to be around
XR = 1.2h, while for Wi = 5 the length measured as XR = 2.3h. The corner–vortex
lengths are corresponding to the values reported by [144] and [145]. [146] and [147]
present the simulations in which the size of the lip vortex continuously increases as the
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Figure 6.17: The geometry of the 4:1 planar contraction and the positions of the re-
circulation vortices are shown. XR is the corner vortex’s reattachment
length.

Weissenberg number increases, while the corner vortex decreases in size. The findings
are significantly contingent upon the mesh resolution. Mousavi et al. [148] illustrated
that elastoviscoplastic (EVP) flows in a 4:1 planar contraction reveal unyielded zones
that enlarge with heightened material elasticity and yield stress, whereas transient flow
patterns arise when the Weissenberg and Bingham numbers surpass critical thresholds.
In the instance of LDD, we have not seen any substantial alterations in the configu-
rations of lip and corner vortices attributable to varying point-cloud resolutions. The
reductions in size correspond to an increasing Weissenberg number up to Wi ≈ 3.
Subsequently, the vortex intensifies with an increase in the Weissenberg number. The
change between the two regimes is located at smaller Weissenberg numbers when a
coarser mesh is used [147]. For example, in [147] the corner vortex start to abruptly
spread for Wi > 10, while in [144, 145] the corner vortex start to abruptly spread
for Wi > 4. All references agree that the stress cannot be perfectly resolved in the
small region near the re-entrant corner, which is not surprising because of the corner
singularity exists regardless of the computational grid–resolution. Since the current
implementation of the LDD method does not include adaptive refinement of the La-
grangian point cloud that is important in the boundary layer region, in this study the
lip vortex for small Weissenberg numbers Wi < 3 could not be analyzed. Therefore,
Figure 6.18 presents the case Wi = 5 in which the lip vortex has significant size com-
pared to the point-cloud resolution, i.e. spacing between neighboring points. From the
figure, it is also evident that the simulation with larger Weissenberg number produced
larger corner vortices.

Figure 6.19 renders the principal stress difference (PSD) around the contraction for
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Figure 6.18: Contour plot of the velocity magnitude and streamlines for the 4:1 planar
contraction, for Wi = 5 (top image) and Wi = 10 (bottom image).
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Figure 6.19: Contours of the principal stress difference (PSD) around the 4:1 planar
contraction, simulated for Wi = 5.

Wi = 5, which is calculated based on the components of the extra-stress tensor as:

PSD =
√
(τxx − τyy)

2 + 4τ 2xy.

The contour plot of the PSD, presented on a logarithmic scale, is discretized into 24
levels to facilitate the analysis and comparison of significant value transitions with
experimental data from [143] and [78]. The numerical results indicate that the pre-
dicted PSD pattern aligns closely with the experimental data obtained from the flow
induced birefringence (FIB) device. The critical details, namely the pattern within
the vortex and the "butterfly pattern" of the PSD [143] are accurately predicted. The
vortex contours are appropriately elongating, while the pattern around the acute angle
symmetrically expands upstream and compresses downstream.

This work employs the standard Oldroyd-B formulation rather than log-conformation
methods, which are typically regarded as more numerically stable [76, 144], so the
simulation with parameters Wi = 14 and Re = 0.01 was undertaken to evaluate
the stability of the numerical scheme for elevated Weissenberg numbers. Figure 6.20
displays the outcomes of the simulation, illustrating the magnitudes of the velocity
field and the components of the extra-stress tensor. The streamlines generated by the
LIC technique are superimposed on the contour plots to verify the accurately con-
verged solution of the velocity field and vortex configuration. Afonso et al. [145] along
with other comparable studies [76, 144, 146] indicate that high Weissenberg-number
computations can solely be executed using the log–conformation method, while the
conventional stress formulation consistently diverges. This study, grounded in the con-
ventional methodology for the extra-stress tensor and aimed at proposing a Lagrangian
reformulation for viscoelastic flows, does not yet elucidate the stability of simulations
across diverse point-cloud resolutions and elevated Wi numbers. The Lagrangian CFL
condition (5.30), governing adaptive time stepping, establishes a sufficient stability cri-
terion ensuring that the PPE can produce a pressure field that maintains simulations
as incompressible and stable.

The components of the extra-stress tensor τ p indicate that the viscoelastic stresses
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Figure 6.20: A contour plot illustrating the velocity magnitude (top left image) and
the components of the extra-stress tensor for the 4:1 planar contraction
simulation, Wi = 14 and Re = 0.01.

are significantly elevated in the horizontal direction, intensifying downstream within
the narrow channel. At the acute corner, all tensor components exhibit comparable
magnitudes, while the gradients of the component values near the contraction are
pronounced. This intricate scenario is inducing significant viscoelastic accelerations
in the fluid (through the term ∇ · τ p) as it is flowing around the corner. Thus, the
pressure gradient is exceedingly high at the corner to maintain incompressible flow. A
minor upstream curvature of streamlines is observable at the corner lip, attributable
to these gradients. Complete lip vortices are formed for smaller Weissenberg numbers,
as illustrated in Figure 6.18. Instabilities reported by certain other numerical methods
have not been detected in the LDD simulations. Subsequent research should examine
the impact of shear bands on vortices [149].

6.2.4 Die swelling

The phenomenon of die swell, or the post-extrusion expansion of a polymer melt, is
significant in polymer processing as it serves as a critical benchmark for assessing the
efficacy of viscoelastic flow solvers. The die swell problem serves as an effective mea-
sure of solver accuracy due to its heightened sensitivity to the constitutive modeling
of viscoelastic properties. To accurately depict the material’s behavior post-die exit,
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Figure 6.21: Schematic depiction of the computational domain and arrangement of the
die-swell experiment.

the solver must integrate the complicated nature of the stress-strain relationship, ad-
dressing discontinuities in geometry and stress distributions. The die swell experiment
is transient; however, the swell ratio progresses until a steady state is attained [150, 1].
Figure 6.21 presents a schematic illustration of the numerical domain for the experi-
ment of die swelling in two dimensions. The fluid is simulated within a channel that
has height of 2h and length of 10h, while the expansion area is 12h long, meaning that
the total domain length is 22h. The swell domain is designed such that the boundary
conditions at the inlet do not influence the flow near the channel exit.

The main dimension was taken h = 0.01 m, and two initial point–spacing values were
tested, ∆ = 0.0005 and ∆ = 0.0002. The evolution of the free surface, captured
during the first 16 seconds of the simulation for Wi = 0.5, is shown in Figure 6.22.
The simulated swell is corresponding to the numerically obtained results by [1]. The
simulations’ results are compared to Tanner’s theory, and data from [150] and [1],
and the comparison is presented in Figure 6.23. The swell ratio is calculated for the
simulation results as Sr = hmax/h, i.e. as the ratio of swell width measured away from
the channel and the channel width. To obtain a comprehensive understanding of the
cases and numerical methods, please refer to the corresponding studies. The study
by [150] utilized an alternative definition of the Weissenberg number and swell ratio,
which is acknowledged by [1] and thus also included in Figure 6.23. Comminal et al.
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Figure 6.22: Images of the free surface from the die-swell simulation, using Wi = 0.5
and Re = 0.5. The progression of the free-surface (one contour per one
simulation second) is juxtaposed with the swell ratio in [1].
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Figure 6.24: Contour plot of the instantaneous values of the trace of the extra–stress
tensor, for the simulated die–swell experiment, using Wi = 0.5 and
Re = 0.5. The points are also plotted to demonstrated convergence of
the point–cloud incompressibility.

obtained disparate results when employing three subtly distinct numerical methods to
simulate the identical flow. Nevertheless, the results of LDD simulations are in a very
good agreement to the referent data, while slighly overpredicting compared numerical
methods for Wi > 0.5. A contour plot of an instantaneous trace of the extra–stress
tensor is given in Figure 6.24, where it can be seen that the concentration of the extra-
-stress is building up near the corners of the channel exit and in the center after the
channel exit, while it diminishes after reaching steady state.
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7.1 Conclusions

In this thesis, a novel meshless and Lagrangian method for simulating incompressible
non-Newtonian and viscoelastic flows with free surfaces was introduced. The method
extends the baseline meshless and Lagrangian method, named Lagrangian Differenc-
ing Dynamics (LDD), which employs mesh-free spatial operators derived from finite
differences, in order to discretize and solve the generalized Navier-Stokes equations in
Lagrangian form. It allows simulating complex fluid properties and behavior, varying
in space and time, without the need for a computational mesh. The fully Lagrangian
nature of the approach, combined with implicit solving of the decoupled pressure and
velocity equations, enables the use of relatively large time steps while maintaining accu-
racy, stability, and performance. The method was efficiently parallelized on both CPU
and GPU architectures, ensuring computational efficiency for large-scale simulations.

The accuracy and robustness of the extended LDD method and its implementation were
demonstrated through extensive validation against experimental and numerical bench-
marks for both non-Newtonian viscoplastic, and viscoelastic flows. Non-Newtonian
flow simulations were conducted using the Bingham, Casson, and Power Law models,
with results showing strong agreement with reference data. Square and skewed cavity
simulations accurately captured recirculation patterns and discontinuous velocity con-
ditions at moving wall boundaries. The method effectively resolved free-surface flow
behavior in dam-break and slump tests, confirming its ability to handle yield stress
materials and complex transient flow phenomena.

For viscoelastic flows, the method was extended to incorporate the influence of the
viscoelasticity tensor within the pressure-Poisson and momentum equations, therefore,
enabling the simulation of polymeric and elastic fluid behavior. The Oldroyd-B model
was used to assess viscoelastic effects such as stress relaxation, configurational memory,
and elongational viscosity. The proposed viscoelastic extension of the extended LDD
method accurately reproduced flow features in lid-driven cavity tests, droplet impact
simulations, 4:1 sudden contraction flows, and die-swell problems, demonstrating its
ability to capture viscoelastic stresses, flow separations, and elongational behavior.
The results aligned well with experimental and theoretical expectations, confirming
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the method’s effectiveness in predicting viscoelastic flow patterns across a range of
complex geometries.

Overall, the LDD method has proven to be a powerful and versatile framework for
modeling both non-Newtonian viscoplastic and viscoelastic fluids in a Lagrangian set-
ting. Its ability to handle large deformations, complex interfaces, and free surfaces
makes it a strong candidate for applications in industrial processing, biological fluid
mechanics, and multiphase flow simulations. The successful validation of this method
against a variety of benchmark problems confirms its accuracy, stability, and computa-
tional efficiency, paving the way for further advancements in the simulation of complex
fluid phenomena.

The final conclusion of this thesis may be summarised as:

Lagrangian meshless modeling is a powerful approach for simulating complex rheological
flows, capturing large deformations, free surfaces, and stress behaviors with stability and
efficiency.
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7.2 Future work

Stability

The solver successfully handled the natural viscoelastic stress tensor formulation within
the proposed Lagrangian meshless method, ensuring accurate stress evolution without
the need for additional stabilization techniques. However, to further enhance numerical
stability at high Weissenberg numbers, future work will focus on extending the method
to incorporate advanced stress representations such as the logarithmic conformation
tensor approach and its square-root variants. These formulations transform the stress
evolution equations in a manner that mitigates numerical singularities and reduces
spurious oscillations, thereby improving robustness in highly elastic flows. It will enable
more stable and accurate simulations of complex viscoelastic flows in regimes where
standard formulations encounter numerical difficulties.

Surface tension forces

Surface tension effects should be incorporated into the methodology, enabling the sim-
ulation of primary and secondary atomization in spraying processes involving non-
Newtonian liquids. By coupling surface tension forces with the existing viscoelastic
stress formulation, the method will be able to capture droplet formation, filament
thinning, and breakup dynamics with greater accuracy. This enhancement will be
particularly useful in applications such as fuel injection systems, pharmaceutical spray
drying, agricultural pesticide spraying, and additive manufacturing processes like inkjet
and 3D bioprinting. The inclusion of surface tension will provide critical insights into
how material properties influence breakup mechanisms, helping to optimize industrial
and biomedical applications that rely on controlled liquid dispersion. This extension
will allow for modeling of complex interfacial phenomena, i.e. competition between
elasticity and capillary forces, leading to better predictive capabilities for real-world
systems.

Advanced consitutive models

Recognizing the limitations of the Oldroyd-B model, particularly its inability to accu-
rately capture shear-dependent viscosity and extensional flow properties in highly non-
linear viscoelastic behavior, future research will focus on implementing more advanced
constitutive models. These models, such as the Giesekus model (for shear-thinning ef-
fects) or the Finitely Extensible Nonlinear Elastic (FENE) models (for polymer chain
extensibility), offer a more realistic representation of complex viscoelastic fluid be-
havior. These models introduce additional complexity, requiring careful numerical
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implementation and potentially leading to increased computational cost and stabil-
ity challenges, which will be addressed through advanced numerical techniques and
adaptive solution strategies.

Biology flows

Future work will focus on extending the solver implementation to accommodate deform-
ing boundaries, enabling the simulation of complex biological systems such as the heart,
heart valves, and other soft tissues. This extension will involve incorporating boundary
evolution in time and space, that seamlessly integrate with the Lagrangian meshless
framework while preserving accuracy and stability in viscoelastic stress computations.
By allowing for dynamically moving and deforming geometries, the enhanced solver
will be well-suited for modeling physiologically relevant flows and tissue mechanics,
opening the door to more realistic simulations of biological fluids, where viscoelasticity
plays a crucial role.

Geology flows

Future work will extend the solver to simulate volcanic lava flows and mudslides by
incorporating advanced viscoplastic and viscoelastic rheological models. To accurately
capture the behavior of lava, temperature-dependent viscosity models and heat transfer
mechanisms will be added to account for cooling and solidification. This will enable
realistic simulations of lava flow fronts, crust formation, and the transition from fluid-
like to solid-like behavior. Additionally, the solver will be enhanced to support fluid-
structure interaction (FSI) by coupling to discrete element method (DEM), allowing
us to model interactions with solid debris, rocks, and sediments in mudslides and
pyroclastic flows. The framework could provide a powerful tool for studying hazard
prediction, mitigation strategies, and the fundamental dynamics of geophysical mass
flows.

Turbulence in viscoelastic flows

A fundamental study on turbulent viscoelastic flows may be conducted, particularly
investigating drag reduction and elastic turbulence at high Weissenberg numbers. By
extending the solver stability to handle highly elastic flow regimes, the interplay be-
tween inertia, elasticity, and turbulence may be explored in both canonical and complex
geometries. The implementation will incorporate advanced constitutive models such
as the FENE-P and Giesekus models to accurately capture polymer stretching and
nonlinear stress effects. These studies will provide deeper insights into mechanisms of

120



7 Conclusions and Future Work

viscoelastic drag reduction, relevant to energy-efficient fluid transport in pipelines and
aerospace applications, as well as the onset and characteristics of elastic turbulence
in microfluidic and industrial processes. Ultimately, this research will contribute to
a more comprehensive understanding of non-Newtonian turbulence and its potential
applications in engineering and natural flow systems.
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